Molecular mechanisms underlying C-fiber stimulation-induced ERK (extracellular signal-regulated kinase) activation in dorsal horn neurons and its contribution to central sensitization have been investigated. In adult rat spinal slice preparations, activation of C-fiber primary afferents by a brief exposure of capsaicin produces an eightfold to 10-fold increase in ERK phosphorylation (pERK) in superficial dorsal horn neurons. The pERK induction is reduced by blockade of NMDA, AMPA/kainate, group I metabotropic glutamate receptor, neurokinin-1, and tyrosine receptor kinase receptors. The ERK activation produced by capsaicin is totally suppressed by inhibition of either protein kinase A (PKA) or PKC. PKA or PKC activators either alone or more effectively together induce pERK in superficial dorsal horn neurons. Inhibition of calcium calmodulin-dependent kinase (CaMK) has no effect, but pERK is reduced by inhibition of the tyrosine kinase Src. The induction of cAMP response element binding protein phosphorylation (pCREB) in spinal cord slices in response to C-fiber stimulation is suppressed by preventing ERK activation with the MAP kinase kinase inhibitor 2-(2-diamino-3-methoxyphenyl-4H-1-benzopyran-4-one (PD98059) and by PKA, PKC, and CaMK inhibitors. Similar signaling contributes to pERK induction after electrical stimulation of dorsal root C-fibers. Intraplantar injection of capsaicin in an intact animal increases expression of pCREB, c-Fos, and prodynorphin in the superficial dorsal horn, changes that are prevented by intrathecal injection of PD98059. Intrathecal PD98059 also attenuates capsaicin-induced secondary mechanical allodynia, a pain behavior reflecting hypersensitivity of dorsal horn neurons (central sensitization). We postulate that activation of ionotropic and metabotropic receptors by C-fiber nociceptor afferents activates ERK via both PKA and PKC, and that this contributes to central sensitization through post-translational and CREB-mediated transcriptional regulation in dorsal horn neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729681PMC
http://dx.doi.org/10.1523/JNEUROSCI.2396-04.2004DOI Listing

Publication Analysis

Top Keywords

dorsal horn
28
horn neurons
24
central sensitization
16
pka pkc
16
protein kinase
12
erk activation
12
superficial dorsal
12
kinase
9
ionotropic metabotropic
8
metabotropic receptors
8

Similar Publications

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

Unlabelled: Calcium imaging is a key method to record the spiking activity of identified and genetically targeted neurons. However, the observed calcium signals are only an indirect readout of the underlying electrophysiological events (single spikes or bursts of spikes) and require dedicated algorithms to recover the spike rate. These algorithms for spike inference can be optimized using ground truth data from combined electrical and optical recordings, but it is not clear how such optimized algorithms perform on cell types and brain regions for which ground truth does not exist.

View Article and Find Full Text PDF

Proteomic analysis of spinal dorsal horn in prior exercise protection against neuropathic pain.

Sci Rep

January 2025

Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Yanta District, Xi'an, 710061, China.

Neuropathic pain (NP) is a complex and prevalent chronic pain condition that affects millions of individuals worldwide. Previous studies have shown that prior exercise protects against NP caused by nerve injury. However, the underlying mechanisms of this protective effect remain to be uncovered.

View Article and Find Full Text PDF

Regional mechanical properties of spinal cord gray and white matter in transverse section.

J Mech Behav Biomed Mater

January 2025

Ecole de Technologie Supérieure, 1100 Rue Notre Dame O, Montréal, QC, H3C 1K3, Canada; Research Center, CIUSSS Nord de L'île de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada; ILab-Spine - Laboratoire International en Imagerie et Biomécanique Du Rachis, France.

Understanding spinal cord injury requires a comprehensive knowledge of its mechanical properties, which remains debated due to the variability reported. This study aims to characterize the regional mechanical properties of the spinal cord in transverse sections using micro-indentation. Quasi-static indentations were performed on the entire surface of transverse slices obtained from 10 freshly harvested porcine thoracic spinal cords using a 0.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!