A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Pseudomonas aeruginosa initiation factor IF-2 is responsible for formylation-independent protein initiation in P. aeruginosa. | LitMetric

Formylation of the initiator methionyl-tRNA (Met-tRNAfMet) was generally thought to be essential for initiation of protein synthesis in all eubacteria based on studies conducted primarily in Escherichia coli. However, this view of eubacterial protein initiation has changed because some bacteria have been demonstrated to have the capacity to initiate protein synthesis with the unformylated Met-tRNAfMet. Here we show that the Pseudomonas aeruginosa initiation factor IF-2 is required for formylation-independent protein initiation in P. aeruginosa, the first bacterium shown to have the ability to initiate protein synthesis with both the initiator formyl-methionyl-tRNA (fMet-tRNAfMet) and Met-tRNAfMet. The E. coli IF-2, which participates exclusively in formylation-dependent protein initiation in E. coli, was unable to facilitate utilization of Met-tRNAfMet in initiation in P. aeruginosa. However, the E. coli IF-2 was made to function in formylation-independent protein initiation in P. aeruginosa by decreasing the positive charge potential of the cleft that binds the amino end of the amino acid attached to the tRNA. Furthermore increasing the positive charge potential of this cleft in the P. aeruginosa IF-2 prevented the protein from participating in formylation-independent protein initiation. Thus, this is the first demonstration of a eubacterial IF-2 with an inherent capacity to facilitate utilization of Met-tRNAfMet in protein initiation, discounting the dogma that eubacterial IF-2 can only allow the use of fMet-tRNAfMet in protein initiation. Furthermore these findings give important clues to the basis for discriminating the initiator Met-tRNA by IF-2 and for the evolution of alternative mechanisms for discrimination.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M408086200DOI Listing

Publication Analysis

Top Keywords

protein initiation
32
formylation-independent protein
16
initiation aeruginosa
16
initiation
12
protein
12
protein synthesis
12
pseudomonas aeruginosa
8
aeruginosa initiation
8
initiation factor
8
if-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!