Endosymbiotic Wolbachia bacteria are abundant in the filarial nematodes that cause onchocerciasis (river blindness), including the larvae (microfilariae) that migrate into the cornea. Using a mouse model of ocular onchocerciasis, we recently demonstrated that it is these endosymbiotic bacteria rather than the nematodes per se that induce neutrophil infiltration to the corneal stroma and loss of corneal clarity (Saint Andre et al., Science 295:1892-1895, 2002). To better understand the role of Wolbachia organisms in the pathogenesis of this disease, we examined the fate of these bacteria in the cornea by immunoelectron microscopy. Microfilariae harboring Wolbachia organisms were injected into mouse corneas, and bacteria were detected with antibody to Wolbachia surface protein. Within 18 h of injection, neutrophils completely surrounded the nematodes and were in close proximity to Wolbachia organisms. Wolbachia surface protein labeling was also prominent in neutrophil phagosomes, indicating neutrophil ingestion of Wolbachia organisms. Furthermore, the presence of numerous electron-dense granules around the phagosomes indicated that neutrophils were activated. To determine if Wolbachia organisms directly activate neutrophils, peritoneal neutrophils were incubated with either parasite extracts containing Wolbachia organisms, parasite extracts depleted of Wolbachia organisms (by antibiotic treatment of worms), or Wolbachia organisms isolated from filarial nematodes. After 18 h of incubation, we found that isolated Wolbachia organisms stimulated production of tumor necrosis factor alpha and CXC chemokines macrophage inflammatory protein 2 and KC by neutrophils in a dose-dependent manner. Similarly, these cytokines were induced by filarial extracts containing Wolbachia organisms but not by Wolbachia-depleted extracts. Taken together, these findings indicate that neutrophil activation is an important mechanism by which Wolbachia organisms contribute to the pathogenesis of ocular onchocerciasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC517527 | PMC |
http://dx.doi.org/10.1128/IAI.72.10.5687-5692.2004 | DOI Listing |
BMC Microbiol
January 2025
School of the Environment, The University of Queensland, Brisbane, QLD, Australia.
Viruses transmitted by arthropods pose a huge risk to human health. Wolbachia is an endosymbiotic bacterium that infects various arthropods and can block the viral replication cycle of several medically important viruses. As such, it has been successfully implemented in vector control strategies against mosquito-borne diseases, including Dengue virus.
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2024
National Antarctic Scientific Center of Ukraine, Kyiv, Ukraine.
Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates.
View Article and Find Full Text PDFActa Trop
December 2024
Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA. Electronic address:
Dengue fever is a mosquito-transmitted disease of great public health importance. Dengue lacks adequate vaccine protection and insecticide-based methods of mosquito control are proving increasingly ineffective. Here we review the emerging use of mosquitoes transinfected with the obligate intracellular bacterium Wolbachia pipientis for vector control.
View Article and Find Full Text PDFBiol Lett
September 2024
Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities.
View Article and Find Full Text PDFVet Parasitol
December 2024
Estación Biológica de Doñana (EBD, CSIC), Américo Vespucio, s/n, Sevilla 41092, Spain; Ciber de Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain. Electronic address:
Hippoboscid flies (Diptera: Hippoboscidae) are obligate bloodsucking ectoparasites of animals. In Europe, limited research has been conducted on this family until the recent introduction of the deer ked Lipoptena fortisetosa Maa, 1965. A new species of the genus Lipoptena, Lipoptena andaluciensis sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!