A mixed-flow blood pump for long-term applications has been developed at the Helmholtz-Institute in Aachen, Germany. Central features of this implantable pump are a centrally integrated motor, a blood-immersed mechanical bearing, magnetic coupling of the impeller, and a shrouded impeller, which allows a relatively wide clearance. The aim of the study was a numerical analysis of hydraulic and hemolytic properties of different impeller design configurations. In vitro testing and numerical simulation techniques (computational fluid dynamics [CFD]) were applied to achieve a comprehensive overview. Pressure-flow charts were experimentally measured in a mock loop in order to validate the CFD data. In vitro hemolysis tests were performed at the main operating point of each impeller design. General flow patterns, pressure-flow charts, secondary flow rates, torque, and axial forces on the impeller were calculated by means of CFD. Furthermore, based on streak line techniques, shear stress (stress loading), exposure times, and volume percentage with critical stress loading have been determined. Comparison of CFD data with pressure head measurements showed excel-lent agreement. Also, impressive trend conformity was observed between in-vitro hemolysis results and numerical data. Comparison of design variations yielded clear trends and results. Design C revealed the best hydraulic and hemolytic properties and was chosen as the final design for the mixed-flow rotary blood pump.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2004.07379.xDOI Listing

Publication Analysis

Top Keywords

hydraulic hemolytic
12
hemolytic properties
12
blood pump
12
properties impeller
8
rotary blood
8
computational fluid
8
fluid dynamics
8
impeller design
8
pressure-flow charts
8
cfd data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!