Until recently the positioning of the sponges (phylum Porifera) within the metazoan systematics was hampered by the lack of molecular evidence for the existence of junctional structures in the surface cell layers. In this study two genes related to the tight junctions are characterized from the demosponge Suberites domuncula: tetraspanin (SDTM4SF), a cell surface receptor, and MAGI (SDMAGI), a MAGUK (membrane-associated guanylate kinase homologue) protein. Especially the MAGI protein is known in other metazoan animal phyla to exist exclusively in tight junctions. The characteristic domains of MAGI proteins (six PDZ domains, two WW domains, and a truncated guanylate kinase motif) are conserved in the sponge protein. The functional analysis of SDMAGI done by in situ hybridization shows its expression in the surface epithelial layers (exopinacoderm and endopinacoderm). Northern blot studies reveal that expression of SDMAGI and SDTM4SF increases after formation of the pinacoderm layer in the animals as well as in primmorphs. These results support earlier notions that sponges contain junctional structures. We conclude that sponges contain epithelia whose cells are organized by cell junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-004-2602-2 | DOI Listing |
Clin Transl Med
January 2025
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.
View Article and Find Full Text PDFPLoS Genet
December 2024
Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.
Circulating metabolite levels have been associated with type 2 diabetes (T2D), but the extent to which T2D affects metabolite levels and their genetic regulation remains to be elucidated. In this study, we investigate the interplay between genetics, metabolomics, and T2D risk in the UK Biobank dataset using the Nightingale panel composed of 249 metabolites, 92% of which correspond to lipids (HDL, IDL, LDL, VLDL) and lipoproteins. By integrating these data with large-scale T2D GWAS from the DIAMANTE meta-analysis through Mendelian randomization analyses, we find 79 metabolites with a causal association to T2D, all spanning lipid-related classes except for Glucose and Tyrosine.
View Article and Find Full Text PDFCurr Issues Mol Biol
October 2024
GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
Lipedema is a chronic disorder affecting women with a 10% incidence worldwide. It is often confused with obesity. This study was undertaken to study microRNAs in lipedema tissue assessed by direct hybridization using the robust n-counter flex DX CE-IVD platform.
View Article and Find Full Text PDFLancet Microbe
January 2025
Division of Infection and Immunity, University College London, London, UK. Electronic address:
Pain
November 2024
Program for Neuroscience, University at Buffalo-The State University of New York, Buffalo, NY, United States.
In phase II clinical trials, NaV1.8 channels were identified as viable targets to treat acute pain. Results were modest, however, and NaV1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!