We compared the contribution of metabotropic glutamate receptors (mGluRs) to the generation and modulation of synaptic responses elicited in intracellularly recorded L5 motoneurons from neonatal rats by segmental and descending fibers. Dorsal root (DR) stimulation at high intensity (C-fiber strength) evoked long latency (2-5-s) depolarization in addition to early monosynaptic and polysynaptic responses. Stimulation of the descending ventrolateral funiculus (VLF) failed to evoke a late response in the same motoneuron. The mGluR antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 0.4 mM) selectively blocked the long latency DR response. This mGluR-mediated response persisted in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate or N-methyl-d-aspartate (NMDA) antagonists, but not both, suggesting that glutamate transmission (either AMPA/kainate or NMDA) is required for mGluR-mediated inputs from small diameter sensory afferents to affect the motoneuron. Although MCPG inhibited the long latency DR response, it induced moderate facilitation of monosynaptic DR and VLF responses. The mGluR agonist 1s3r-ACPD induced motoneuron depolarization and depressed the monosynaptic DR and VLF responses. MCPG also facilitated the neurotrophin-3 and brain-derived neurotrophic factor induced strengthening of the monosynaptic DR responses (but only before P6, since neurotrophins are ineffective later at DR synapses and never at VLF synapses after birth). Our results suggest that mGluRs are involved in synaptic pathways to motoneurons made by DR but not VLF fibers. MCPG-induced facilitation of monosynaptic AMPA/kainate DR and VLF responses suggests the possibility of tonic mGluR-mediated inhibition of DR and VLF responses. We speculate that MCPG facilitates neurotrophin-induced strengthening of monosynaptic DR responses by reducing this tonic inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.104.075077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!