AI Article Synopsis

  • PriB is a crucial protein in E. coli that helps form the primosome, a complex necessary for starting DNA replication.
  • The crystal structure of PriB was determined at high resolution, revealing similarities to single-stranded DNA-binding proteins, but PriB functions as a dimer.
  • Experimental assays showed that PriB has a strong affinity for both single-stranded DNA and RNA, with specific base preferences, suggesting its role in interactions crucial for DNA replication.

Article Abstract

PriB is one of the Escherichia coli varphiX-type primosome proteins that are required for assembly of the primosome, a mobile multi-enzyme complex responsible for the initiation of DNA replication. Here we report the crystal structure of the E. coli PriB at 2.1 A resolution by multi-wavelength anomalous diffraction using a mercury derivative. The polypeptide chain of PriB is structurally similar to that of single-stranded DNA-binding protein (SSB). However, the biological unit of PriB is a dimer, not a homotetramer like SSB. Electrophoretic mobility shift assays demonstrated that PriB binds single-stranded DNA and single-stranded RNA with comparable affinity. We also show that PriB binds single-stranded DNA with certain base preferences. Based on the PriB structural information and biochemical studies, we propose that the potential tetramer formation surface and several other regions of PriB may participate in protein-protein interaction during DNA replication. These findings may illuminate the role of PriB in varphiX-type primosome assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M406773200DOI Listing

Publication Analysis

Top Keywords

dna replication
12
prib
10
crystal structure
8
escherichia coli
8
coli prib
8
varphix-type primosome
8
prib binds
8
binds single-stranded
8
single-stranded dna
8
dna
5

Similar Publications

The evaluation of targeted exome sequencing of candidate genes in a Han Chinese population with primary open-angle glaucoma.

Hum Mol Genet

January 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai 200031, China.

Primary open-angle glaucoma (POAG), known as a common ocular disease with genetic heterogeneity, is characterized by progressive optic disc atrophy and visual field defects. This study aimed to assess the contribution of previously reported POAG-associated genes and investigate potential functional variations and genotype-phenotype correlations in a Han Chinese population. DNA from 500 cases and 500 controls was pooled and sequenced using a customized panel of 398 candidate genes.

View Article and Find Full Text PDF

SSB promotes DnaB helicase passage through DnaA complexes at the replication origin oriC for bidirectional replication.

J Biochem

January 2025

Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.

View Article and Find Full Text PDF

The tomato Ty-6 gene conferring resistance against begomoviruses has been cloned and shown to be a variant of DNA polymerase delta subunit 1. Ty-6 is a major resistance gene of tomato that provides resistance against monopartite and bipartite begomoviruses. The locus was previously mapped on chromosome 10, and in this study, we fine-mapped Ty-6 to a region of 47 kb, including four annotated candidate genes.

View Article and Find Full Text PDF

The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair.

Nat Metab

January 2025

State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.

Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.

View Article and Find Full Text PDF

To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!