AI Article Synopsis

  • The mechanisms behind how gender affects immune responses are not well understood, particularly regarding the role of invariant natural killer T (iNKT) cells and their cytokine production.
  • Research found that female mice produced significantly higher levels of interferon gamma (IFN-gamma) in response to the iNKT cell ligand alpha-galactosylceramide (alpha-GalCer) compared to male mice, indicating a hormone influence on immune responses.
  • The study demonstrated that ovarian hormones, specifically estrogens, enhance IFN-gamma production in iNKT cells, suggesting that these hormones contribute to gender differences in immune responses.

Article Abstract

Mechanisms accounting for gender dimorphism during immune responses are still poorly understood. Since invariant natural killer T (iNKT) cells exert important regulatory functions through their capacity to produce both T helper 1 (Th1) and Th2 cytokines, we addressed the question of whether these activities could be modulated by sexual hormones. We found that in vivo challenge with the specific ligand of iNKT cells, alpha-galactosylceramide (alpha-GalCer), induced significantly higher concentrations of interferon gamma (IFN-gamma) in the serum of female than in that of male mice, while interleukin 4 (IL-4) production was not modified. In support of a crucial role of ovarian hormones in this phenomenon, a significant decrease of serum IFN-gamma concentrations occurred in ovariectomized females, in response to treatment with alpha-GalCer, while orchidectomy affected neither IFN-gamma nor IL-4 serum concentrations in males. The implication of estrogens in this selective enhancement of IFN-gamma production by iNKT cells was demonstrated by (1) the increased alpha-GalCer-induced IFN-gamma synthesis by iNKT cells upon both in vitro and in vivo exposure to estradiol and (2) the abolition of the sex-linked difference in alpha-GalCer-induced IFN-gamma release in estrogen receptor alpha-deficient mice. These results provide the first evidence that estrogens influence iNKT cells leading to this gender dimorphism in their cytokine production profile.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2004-07-2819DOI Listing

Publication Analysis

Top Keywords

inkt cells
20
ifn-gamma production
8
invariant natural
8
natural killer
8
gender dimorphism
8
alpha-galcer-induced ifn-gamma
8
cells
7
ifn-gamma
7
inkt
5
relevance sexual
4

Similar Publications

Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.

View Article and Find Full Text PDF

Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Gastric cancer (GC) ranks 3rd in incidence rate and mortality rate among malignant tumors in China, and the age-standardized five-year net survival rate of patients with GC was 35.9% from 2010 to 2014. The tumor immune microenvironment (TIME), which includes T cells, macrophages, natural killer (NK) cells and B cells, significantly affects tumor progression, immunosuppression and drug resistance in patients with GC.

View Article and Find Full Text PDF

Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy.

Cell Commun Signal

January 2025

Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.

Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.

Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!