A medical device using riboflavin (RB) and light is being developed for the reduction of pathogens in platelet concentrates (MIRASOL pathogen reduction technology [PRT]). A high-performance liquid chromatography (HPLC) method for the quantification of RB and its main photoproduct, lumichrome (LC) in blood components has been developed and validated. In addition, the same method has been used to identify and quantify the presence of additional photoproducts-catabolites of RB. Levels of these agents before and after treatment as well as endogenous levels present in normal donor blood are reported using this analytical technique. The method allows for quantitative and qualitative analysis of RB and LC in blood components using HPLC-fluorescence detection, a Zorbax SB-CN (stable bond cyano) column and a methanol-water mobile phase. Quantitation and qualitative analysis of additional photoproducts of RB was also performed, but the method has not been validated for these other components. The method described has passed an 8 day validation and has been found to be adequate for its intended use. The range of the method for RB is 0.016-1.500 microM and for LC is 0.060-1.500 microM. The method detection limit for RB is 0.0006 microM and for LC is 0.012 microM. The acceptance criteria for repeatability were met; the relative standard deviation for RB was 0.64% and for LC was 0.76%. The acceptance criteria for bias were met with a 97% average recovery for RB and a 102% recovery for LC. Samples were centrifuged and diluted 1:50 with 0.9% saline before analysis. No protein precipitation or extraction was required. A mass balance of approximately 93.4-94.4% was achieved after exposure of products to UV light in the intended pathogen reduction treatment method. The method permitted the identification of photoproducts in blood that were both naturally occurring and produced after photolysis of blood samples treated with the PRT process. The identity of these photoproducts has been established using HPLC Tandem Mass Spectrometry (MS/MS) and UV spectroscopic methods and has been correlated with known metabolites and catabolites of RB. HPLC with fluorescence detection using a reverse phase cyano-column allows for accurate separation, identification and quantification of both RB and LC in blood products without the need for solvent extraction or protein precipitation. Additional photoproducts could also be identified and quantified using this method. The presence of these agents in normal, untreated blood suggests that their presence in blood is ubiquitous.

Download full-text PDF

Source
http://dx.doi.org/10.1562/2004-04-14-TSN-139DOI Listing

Publication Analysis

Top Keywords

pathogen reduction
12
method
11
blood
9
separation identification
8
identification quantification
8
photoproducts blood
8
blood products
8
high-performance liquid
8
liquid chromatography
8
fluorescence detection
8

Similar Publications

for targeting MRSA virulence: and studies.

Heliyon

January 2025

Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon.

The present study reports the characterization of the phytochemical content and the antibacterial activity of ethanolic extracts from the leaves (LE) and stems (SE) of against Methicillin resistant (MRSA. Important functional groups were determined by analyzing the FTIR spectra of LE and SE. The phytochemical profiles were analyzed by GC-MS, and these characterized the chemicals according to retention periods and peak regions.

View Article and Find Full Text PDF

Introduction: Avian orthoreovirus (ARV) is a significant pathogen causing viral arthritis, leading to substantial economic losses in the poultry industry worldwide.

Methods: A novel ARV strain, designated FJ202311, was isolated from a broiler farm in Fujian Province, China. Whole-genome sequencing was conducted using next-generation sequencing with MGI technology, and phylogenetic analysis of the sigma C amino acid sequence was performed.

View Article and Find Full Text PDF

Non-targeted metabonomics reveals the effect of linalyl alcohol on Brochothrix thermophile and its potential application.

Food Res Int

February 2025

College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China. Electronic address:

Brochothrix thermophcta (B. thermophcta) is a pathogenic microorganism associated with food contamination. Linalyl alcohol, owing to its broad spectrum and exceptional antibacterial properties, is regarded as a potent natural antimicrobial agent.

View Article and Find Full Text PDF

Background: Familial chylomicronemia syndrome (FCS) is diagnosed by genetic or non-genetic criteria.

Objective: To assess responses to treatment of apolipoprotein (apo)C-III, triglycerides, and pancreatitis events in patients with FCS-based diagnostic methods.

Methods: APPROACH enrolled 66 patients with FCS randomized to volanesorsen or placebo for 12 months.

View Article and Find Full Text PDF

Background: Twelve bacterial families were identified as global priority pathogens by the World Health Organization in 2017, recognizing the greatest threat they pose to human health and the declining antibiotic efficacy. Robotics has emerged as a swift and contactless tool for disinfecting bacterial surface contamination in healthcare facilities, however, head-to-head comparison of disinfection efficacy of robotic versus manual disinfections is limited. This study aimed at comparing how robotic disinfection performs over manual disinfection against the global priority pathogens in the healthcare setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!