Highly enantioselective conjugate addition of nitroalkanes to alkylidenemalonates has been accomplished for the first time by the utilization of efficient phase-transfer catalysis of N-spiro C2-symmetric chiral quaternary ammonium bromide 1. For instance, simple mixing of nitropropane (2, R1 = Et), diisopropyl benzylidienemalonate (3, R2 = Ph), Cs2CO3 (1 equiv), and (S,S)-1 (1 mol %) in toluene at 0 degrees C for 2.5 h gave rise to the desired conjugate addition product 4 (R1 = Et, R2 = Ph) quantitatively (anti/syn = 86:14) with 97% ee (anti isomer). The applicability of this procedure has been demonstrated with other representative alkylidenemalonates and nitroalkanes. Since 4 can be readily transformed into the corresponding gamma-amino acid hydrochloride 5 without loss of diastereo- and enantioselectivity, the present method provides a new and practical access to various optically active gamma-amino acid derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja047047vDOI Listing

Publication Analysis

Top Keywords

conjugate addition
12
highly enantioselective
8
enantioselective conjugate
8
addition nitroalkanes
8
nitroalkanes alkylidenemalonates
8
efficient phase-transfer
8
phase-transfer catalysis
8
catalysis n-spiro
8
gamma-amino acid
8
alkylidenemalonates efficient
4

Similar Publications

Chemodivergent and Enantioselective Synthesis of Spirobi[dihydrophenalene] Structures.

Org Lett

January 2025

Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, People's Republic of China.

The development and enantioselective synthesis of two types of -symmetric spirobi[dihydrophenalene] structures is reported. The reaction proceeds via rhodium-catalyzed 2-fold asymmetric conjugate arylation of dienones followed by BF·OEt-promoted spirocyclization to give the enantiopure spiro products. Additive-dependent chemodivergent synthesis of 3,3'-diarylated 2,2',3,3'-tetrahydro-1,1'-spirobi[phenalene]-9,9'-diols (3,3'-Ar-SPHENOLs) and the corresponding spiro diary ethers from the same intermediate is achieved.

View Article and Find Full Text PDF

Bottom-up syntheses of carbon nanodots (CND) using solvothermal treatment of citric acid are known to afford nanometer-sized, amorphous polycitric acid-based materials. The addition of suitable co-reactants in the form of in-situ synthesized N-hetero-π-conjugated chromophores facilitates hereby the overall functionalization. Our incentive was to design a CND model that features phenazine (P-CND) - a well-known N-hetero-π-conjugated chromophore - to investigate the influence of the CND matrix on its redox chemistry as well as photochemistry.

View Article and Find Full Text PDF

Recent Developments in Azetidinone-Azole Conjugates: Emerging Antimicrobial Potentials.

Med Chem

January 2025

Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.

The emergence of multidrug-resistant microbial strains poses a significant challenge to global public health. In response, researchers have been exploring innovative antimicrobial agents with enhanced efficacy and novel mechanisms of action. One promising approach involves the synthesis of hybrid molecules combining azetidinone and azole moieties, capitalizing on the respective antimicrobial properties of both structural elements.

View Article and Find Full Text PDF

Background: Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested Curcumin is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.

View Article and Find Full Text PDF

Evaluating the anticancer effects of carnosic acid against breast cancer: An In Vitro investigation.

Tissue Cell

January 2025

Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran. Electronic address:

Background: Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10).

Materials And Methods: The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!