Velocity effects on fullerene and oxide nanoparticle deposition in porous media.

Environ Sci Technol

Department of Civil and Environmental Engineering, Rice University, MS-317, Houston, Texas 77005, USA.

Published: August 2004

Products of nanochemistry have been proposed in a number of applications ranging from soil stabilization and cosmetics to groundwater remediation. A fundamental understanding of the transport properties of these materials is essential to assess their efficacy and environmental impact in such applications. In this work, we consider the effect of flow on nanoparticle transport and deposition in porous media. The transport of three aqueous suspensions of fullerenes in a well-characterized porous medium is compared with that of two oxide nanomaterials at two flow rates. Despite significant differences in surface chemistry and size, the fullerenes exhibited an unexpected and similar breakthrough behavior at the higher flow rate. A striking characteristic of the fullerene breakthrough curves obtained at the higher Darcy velocity was an initial enhancement in nanoparticle deposition shortly after the passage of the first pore volume of suspension, followed by an increase in passage. This velocity-sensitive "affinity transition" in the initial deposition of nanoparticles in the porous medium was observed for fullerene-based materials only at the higher velocity and was in no case observed for silica or titania nanoparticles. The removal of fullerene-based nanoparticles was observed to converge to a level that was independent of flow velocity, suggesting that under these conditions time scales for attachment or reorganization on the surface are greater than the time scale for transport to collector surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es035354fDOI Listing

Publication Analysis

Top Keywords

nanoparticle deposition
8
deposition porous
8
porous media
8
porous medium
8
velocity
4
velocity effects
4
effects fullerene
4
fullerene oxide
4
oxide nanoparticle
4
deposition
4

Similar Publications

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment.

ACS Nano

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.

Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.

View Article and Find Full Text PDF

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

Preparation of a CNF porous membrane and synthesis of silver nanoparticles (AgNPs).

RSC Adv

January 2025

The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.

We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!