Background: Lipid rafts are cholesterol- and glycosphingolipid-rich microdomains in the cellular plasma membranes that play critical roles in compartmentalization (concentration, coupling, and isolation) of receptors and signal molecules. Therefore, detecting constitutive or induced raft associations of such proteins is of central interest in cell biology. This has mostly been done with time- and cell-consuming immunobiochemical techniques affected by several sources of artifacts. A flow cytometric analysis of immunocytochemical staining under differential circumstances of detergent treatment offers a new alternative to this method.

Methods: Membrane microdomains are resistant to nonionic detergents due to extensive, strong interactions between their molecular constituents. We used this feature to develop a rapid flow cytometric assay of differential detergent resistance based on immunocytochemical labeling of extracellular domain epitopes in membrane proteins. Data evaluation is based on comparative detection of their detergent solubility without and with cholesterol depletion of cell membranes, resolved by moderate concentrations of nonionic detergents.

Results: Nonionic detergents Triton X-100 and Nonidet-40 (0.05-0.1%) in cold or Brij-98 (0.1-0.5%) at 37 degrees C efficiently resolved detergent solubility or resistance of many lymphocyte cell surface proteins. Kinetic data revealed that a short (5-10 min) detergent treatment is sufficient for this assay. Comparison of detergent solubility in untreated and cholesterol-depleted cells differentiated membrane proteins associated with or excluded from raft microdomains, respectively. Confocal microscopy showed that this mild detergent treatment leaves the cytoskeleton of the cells intact, with a detectable expression of raft marker detergent-resistant proteins attached to it. An induced association with rafts of immunoglobulin E receptors upon antigen cross-linking was also easily detectable in rat mast cells by this approach.

Conclusions: A protocol is proposed for a rapid (5-10 min) test of detergent resistance of membrane proteins in cells. The approach requires only a small amount of cells (10(4)/sample) and offers a good resolution of detergent solubility or resistance of membrane proteins, also in terms of the underlying mechanisms, with an advantage of applicability for all conventional bench-top flow cytometers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20080DOI Listing

Publication Analysis

Top Keywords

membrane proteins
20
detergent solubility
16
detergent resistance
12
flow cytometric
12
detergent treatment
12
detergent
10
rapid flow
8
detecting constitutive
8
constitutive induced
8
induced raft
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!