TGF-beta signaling is frequently perturbed in many human cancers, including renal cell carcinomas (RCCs) and transitional cell carcinomas (TCCs) of the bladder. Genetic alterations of the TGF-beta type 1 receptor (TGFBR1) may contribute to these perturbations. We therefore examined variations in the TGFBR1 gene by PCR, SSCP and RFLP in carcinomas of the urinary system and in tissues from noncancer, age-matched controls. A G-->A variant 24 bp downstream of the exon/intron 7 boundary of the TGFBR1 gene (Int7G24A) was evident in patients with RCC (46.5%, n = 86) and bladder and upper urinary tract TCC (49.2%, n = 65) significantly more frequently than in age-matched controls (28.3%, n = 113, p < 0.002 by chi2 test). Moreover, 8 homozygous variant carriers were found in the cancer groups, whereas not a single homozygous variant carrier was found in the control group. The Int7G24A allele (both heterozygous G/A and homozygous A/A carriers) was associated with increased RCC incidence (OR = 2.20, 95% CI 1.22-3.96) and TCC incidence (OR = 2.45, 95% CI 1.89-3.16). One somatic mutation of serine to phenylalanine at codon 57 of the TGFBR1 gene was confirmed in an upper urinary tract TCC. In conclusion, the Int7G24A variant in the TGFBR1 gene is significantly more frequent in patients with RCC and TCC than normal age-matched controls, suggesting that it may represent a risk factor for the development of kidney and bladder carcinomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.20419 | DOI Listing |
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs).
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China. Electronic address:
Tubulointerstitial fibrosis is a common pathway of the progressive development of chronic kidney diseases (CKD) with different etiologies. The transcription factor interferon regulatory factor 5 (IRF5) can induce anti-type I interferons and proinflammatory cytokine genes and has been implicated as a therapeutic target for various inflammatory and autoimmune diseases. Currently, no experimental evidence has confirmed the role of IRF5 in CKD.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
Pancreatic cancer (PC) is one of the leading causes of cancer deaths, associated with a high risk of metastasis and mortality. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is highly expressed in multiple types of tumour tissues and may be associated with the growth of PC cells. In this study, we aimed to assess the role and possible mechanisms of MALAT1 in PC progression.
View Article and Find Full Text PDFInt J Gen Med
December 2024
Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People's Republic of China.
Purpose: To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.
Methods: The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!