Bovine insulin has long been known to self-assemble in vitro into amyloid fibrils. We have observed a further higher-order self-association of the protein into spherical structures, with diameters typically around 50 microm but ranging from 10 to 150 microm. In a polarizing light microscope, these structures exhibit a "Maltese-cross" extinction pattern typical of spherulites. Spherical structures of a similar size distribution can be observed in the environmental scanning electron microscope, which also reveals the presence of significant amounts of water in the structures. The spherulites contain a large quantity of well defined amyloid fibrils, suggesting that they are formed at least in part as a consequence of the self-assembly of preformed fibrils. Similar structures also have been observed in the tissues of patients suffering from amyloid disorders. The ability of amyloid fibrils to form such higher-order assemblies supports the hypothesis that they represent a generic form of polypeptide structure with properties that are analogous to those of classical synthetic polymers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC521966 | PMC |
http://dx.doi.org/10.1073/pnas.0405933101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!