A cDNA encoding adenylate isopentenyltransferase (AIPT) was cloned and sequenced from cones of hop (Humulus lupulus L.) by RT-PCR using oligonucleotide primers based on the conserved sequences of Arabidopsis thaliana AIPT isozymes (AtIPT1, AtIPT3, AtIPT4, AtIPT5, AtIPT6, AtIPT7 and AtIPT8). A full-length cDNA contained a 990-bp open reading frame encoding a molecular mass of 36,603 Da protein with 329 amino acids. Further, DNA sequencing of genomic DNA revealed absence of introns in the frame. On Southern blot analysis, a single AIPT gene was detected in H. lupulus, while RT-PCR analyses demonstrated that the gene was equally expressed in almost all tissues in the plant including roots, stems, leaves and cones. The deduced amino acid sequence shares 38-51% identity to those of A. thaliana AtIPTs. A recombinant enzyme expressed in Escherichia coli catalyzed isopentenyl transfer reaction from dimethylallyldiphosphate (DMAPP) to the N6 amino group of adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP), respectively. In contrast, other nucleotides; guanosine monophosphate (GMP), inosine monophosphate (IMP), cytosine monophosphate (CMP), uridine monophosphate (UMP), were not accepted as a substrate. Interestingly, steady-state kinetic analyses revealed that the isopentenylation of ADP and ATP were more efficient than that of AMP as previously reported for A. thaliana AtIPT4. Finally, H. lupulus AIPT contains the putative ATP/GTP binding motif at the N-terminal as in the case of other known isopentenyltransferases. Site-directed mutagenesis of a conserved Asp62, located right after the ATP/GTP binding motif, with Ala resulted in complete loss of enzyme activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2004.08.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!