The molecular signalling pathways governing skeletal muscle differentiation remain unclear. Recent work has demonstrated that both the phosphatidylinositol 3-kinase (PI3K)/Akt and p38 pathways play important roles in myogenesis. Here, we describe the interactions between these pathways in C2C12 cells. Overall, our results suggest that Akt acts downstream of p38 in myogenic cell differentiation. Activating the p38 pathway results in the concurrent activation of Akt; conversely, activating Akt does not affect p38. We have analysed Akt messenger RNA and protein levels in a C2C12 cell line stably expressing a dominant negative (DN) form of the p38 activator MKK3. Compared to control cells, this cell line exhibits reduced levels of Akt messenger RNA and total protein. In addition, blocking the p38 pathway during differentiation inhibits Akt activation. Our results show for the first time that p38 can directly affect Akt at the transcriptional level as well as at the protein activation level during myogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2004.05.003 | DOI Listing |
The Rac1 P29S hotspot mutation in cutaneous melanoma is associated with resistance to MAPK pathway inhibitors (MAPKi) and worse clinical outcomes. Moreover, activation of Rac1 guanine exchange factors (GEFs) also promotes MAPKi-resistance, particularly in undifferentiated melanoma cells. Here we delineate mechanisms of Rac1-driven MAPKi-resistance and identify strategies to inhibit the growth of this class of cutaneous melanomas.
View Article and Find Full Text PDFClin Transl Med
January 2025
Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.
Introduction: Heart failure with preserved ejection fraction (HFpEF) is a complex condition characterized by metabolic dysfunction and myocardial lipotoxicity. The roles of PTEN-induced kinase 1 (PINK1) and peroxiredoxin-2 (Prdx2) in HFpEF pathogenesis remain unclear.
Objective: This study aimed to investigate the interaction between PINK1 and Prdx2 to mitigate cardiac diastolic dysfunction in HFpEF.
Cell Biochem Biophys
January 2025
Pharmacy Administration Office, The Third Hospital of Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China.
In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.
View Article and Find Full Text PDFCell Biol Int
January 2025
Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan.
The transcription factor brain and muscle Arnt-like protein-1 (BMAL1) is a clock protein involved in various diseases, including atherosclerosis and cancer. However, BMAL1's involvement in kidney fibrosis and the underlying mechanisms remain largely unknown, a gap addressed in this study. Analysis through Masson's trichrome and Sirius red staining revealed that all groups exposed to unilateral ureteral obstruction showed increased BMAL1 protein expression accompanied by increased TGF-β1 expression and elevated key fibrosis markers, including α-SMA, compared with sham groups.
View Article and Find Full Text PDFBiomol Biomed
December 2024
Otolaryngology Head and Neck Surgery, China Resources & Wisco General Hospital, Wuhan, Hubei, China.
Chlorogenic acid (CGA) exhibits promising anti-inflammatory properties, making it a potential therapeutic agent for inflammatory conditions and allergic rhinitis (AR). This study aimed to evaluate the therapeutic effects of CGA on inflammation in RAW264.7 macrophage cells and on AR in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!