Assessing the market opportunities of landfill mining.

Waste Manag

Faculty of Management and Organization, University of Groningen, PO Box 800, 9700 AV, The Netherlands.

Published: January 2005

Long-term estimates make clear that the amount of solid waste to be processed at landfills in the Netherlands will sharply decline in coming years. Major reasons can be found in the availability of improved technologies for waste recycling and government regulations aiming at waste reduction. Consequently, market size for companies operating landfills shrinks. Among the companies facing the problem is the Dutch company Essent. Given the expected market conditions, it looks for alternative business opportunities. Landfill mining, i.e., the recycling of existing landfills, is considered one of them. Proceeds of landfill mining are related to, for example, recycled materials available for re-use, regained land, and possibilities for a more efficient operation of a landfill. The market for landfill mining is of a considerable size--there are about 3800 landfills located in the Netherlands. Given market size the company faces the dilemma of how to explore this market, i.e., select the most profitable landfills in a fast and efficient way. No existing methods or tools could be found to do so. Therefore, to answer to the problem posed, we propose a step-wise research method for market exploration. The basic idea behind the method is to provide an adequate, cost-saving and timely answer by relying on a series of quick scans. Relevant aspects of a mining project concern the proceeds of regained land and recyclables, the costs of the mining operation and the associated business and environmental risks. The method has been tested for its practical use in a pilot study. The pilot study addressed 147 landfills located in the Dutch Province of Noord-Brabant. The study made clear how method application resulted in the selection of a limited number of high potential landfills in a few weeks, involving minimal research costs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2004.05.004DOI Listing

Publication Analysis

Top Keywords

landfill mining
16
opportunities landfill
8
market size
8
regained land
8
landfills located
8
pilot study
8
landfills
7
mining
6
market
6
landfill
5

Similar Publications

Hybrid modelling framework for ozonation and biological activated carbon in tertiary wastewater treatment.

Water Sci Technol

December 2024

Department of Civil Engineering, New Engineering Building, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; Future Water Institute, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa.

Despite water being a significant output of water and resource recovery facilities (WRRFs), tertiary wastewater treatment processes are often underrepresented in integrated WRRF models. This study critically reviews the approaches used in comprehensive models for ozone (O) and biological activated carbon (BAC) operation units for wastewater tertiary treatment systems. The current models are characterised by limitations in the mechanisms that describe O disinfection and disinfection by-product formation, and BAC adsorption in multi-component solutes.

View Article and Find Full Text PDF

Here we describe two innovative approaches for remediating sediments contaminated with organotin compounds (OTCs, mainly TBT) and metal(loid)s. The first involves chemical stabilization through amendments with nanoscale zero-valent iron (nZVI), dunite mining waste, and coal tailings, materials that have not been previously studied for OTC remediation. The second focuses on physical soil washing, using grain-size separation and magnetic separation to isolate the most polluted fractions, thereby reducing the volume of contaminated material destined for landfills.

View Article and Find Full Text PDF

Microplastics (MPs), plastic pieces smaller than 5 mm, are emerging as a critical ecological threat, potentially disrupting ecosystems and complicating waste management practices. Landfill-Mined Soil-Like Material (LMSLM), a byproduct of landfill reclamation, is gaining global traction for rehabilitating degraded land and repurposing it for geotechnical applications. While studies have examined contaminants like heavy metals and salts, MPs contamination has been largely overlooked, raising environmental concerns.

View Article and Find Full Text PDF

The huge amount of leachate generated in landfills causes persistent pollution to soil and groundwater. Landfill cover is vital for reducing leachate generation through reducing rainwater infiltration. Yet, the traditional cover with capillary barrier effects (CCBE) is only applicable in reducing rainwater percolation at its base in arid or semi-arid region.

View Article and Find Full Text PDF

The focus of this study was to assess the environmental impact of the BATOKE oil sludge dump. A field visit was conducted to evaluate the condition of the site, followed by the sampling of oil sludge, BATOKE river water, soil, and locally grown manioc and macabo tubers. Subsequent physico-chemical characterization revealed parameters such as pH, electrical conductivity, total hydrocarbons, COD, BOD5, TSS, major cations and anions, as well as heavy metals including iron, copper, zinc, nickel, chromium, lead, cadmium, mercury, arsenic, calcium, potassium, titanium, zirconium, and rubidium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!