The adenosine A(1) receptor is involved in spinal cord antinociception. As its role at supraspinal sites is not well known, we studied the systemic effects of its agonist N-cyclopentyl-adenosine (CPA) in single motor units from adult-spinalized, intact and sham-spinalized rats. CPA was not effective after spinalization, but it was very effective in intact animals (ID50: 92+/-1.3 microg/kg, noxious pinch) and over 10-fold more potent in sham-spinalized animals (ID50 of 8.3+/-1 microg/kg). Wind-up was also inhibited by CPA. We also studied the effect of CPA in the immature spinal cord preparation, where CPA dose-dependently inhibited responses to low (IC50s: 9+/-0.7 and 7.7+/-1.3 nM) and high intensity stimulation (IC50s: 4.9+/-0.5 and 12.1+/-2 nM). We conclude that the integrity of the spinal cord is crucial for the antinociceptive activity of systemic CPA in adult rats but not in immature rats, not yet influenced by a completely developed supraspinal control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2004.07.083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!