Adult neural progenitor cells (NPC) are an attractive source for cell transplantation and neural tissue replacement after central nervous system (CNS) injury. Following transplantation of NPC cell suspensions into the acutely injured rat spinal cord, NPC survive; however, they migrate away from the lesion site and are unable to replace the injury-induced lesion cavity. In the present study we examined (i) whether NPC can be retained within the lesion site after co-transplantation with primary fibroblasts, and (ii) whether NPC promote axonal regeneration following spinal cord injury. Co-cultivation of NPC with fibroblasts demonstrated that NPC adhere to fibroblasts and the extracellular matrix produced by fibroblasts. In the presence of fibroblasts, the differentiation pattern of co-cultivated NPC was shifted towards glial differentiation. Three weeks after transplantation of adult spinal-cord-derived NPC with primary fibroblasts as mixed cell suspensions into the acutely injured cervical spinal cord in adult rats, the lesion cavity was completely replaced. NPC survived throughout the graft and differentiated exclusively into glial cells. Quantification of neurofilament-labeled axons and anterogradely labeled corticospinal axons indicated that NPC co-grafted with fibroblasts significantly enhanced axonal regeneration. Both neurofilament-labeled axons and corticospinal axons aligned longitudinally along GFAP-expressing NPC-derived cells, which displayed a bipolar morphology reminiscent of immature astroglia. Thus, grafted astroglial differentiated NPC promote axon regrowth following spinal cord injury by means of cellular guidance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2004.03657.x | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima; and.
Objective: An MRI protocol for germinoma surveillance after complete remission has not been established. Moreover, the standard treatment for recurrent or refractory germinoma has not been determined. In this study, the authors explored the imaging characteristics of recurrent germinoma and discuss their institution's experience with multidisciplinary treatment of this malignancy.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
3Department of Orthopedic Surgery, Haeundae Bumin Hospital, Busan, South Korea.
Objective: Conventional decompression surgery for beak-type ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine, whether approached anteriorly or posteriorly, poses several challenges, including technical complexity, cerebrospinal fluid leakage, incomplete decompression, and potential neurological deterioration. Therefore, the authors introduce a novel technique, anterior sliding decompression osteotomy (ASDO), for thoracic myelopathy caused by OPLL and evaluate the efficacy and safety of this technique.
Methods: Six patients (4 men and 2 women) who underwent ASDO surgery for beak-type OPLL in the thoracic spine with a follow-up period of at least 2 years were included in the cohort.
J Neurosurg Spine
January 2025
3Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
J Neurosurg Spine
January 2025
7Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada; and.
PLoS One
January 2025
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!