Familial forms of amyotrophic lateral sclerosis (ALS) can be caused by mutations in copper, zinc-superoxide dismutase (SOD1). Mice expressing SOD1 mutants demonstrate a robust neuroinflammatory reaction characterized, in part, by up-regulation of tumor necrosis factor alpha (TNFalpha) and its primary receptor TNF-RI. In an effort to identify small molecule inhibitors of neuroinflammation useful in treatment of ALS, a microglial culture system was established to identify TNFalpha antagonists. Walker EOC-20 microglia cells were stimulated with recombinant TNFalpha, with or without inhibitors, and the cell response was indexed by NO2- output. Three hundred and fifty-five rationally selected compounds were included in this bioassay. The arachidonic acid 5-lipoxygenase (5LOX) and tyrosine kinase inhibitor nordihydroguaiaretic acid (NDGA), a natural dicatechol, was one of the most potent non-cytotoxic antagonists tested (IC50 8 +/- 3 microm). Investigation of the G93A-SOD1 mouse model for ALS revealed increased message and protein levels of 5LOX at 120 days of age. Oral NDGA (2500 p.p.m.) significantly extended lifespan and slowed motor dysfunction in this mouse, when administration was begun relatively late in life (90 days). NDGA extended median total lifespan of G93A-SOD1 mice by 10%, and life expectancy following start of treatment was extended by 32%. Disease-associated gliosis and cleaved microtubule-associated tau protein, an indicator of axon damage, were likewise reduced by NDGA. Thus, TNFalpha antagonists and especially 5LOX inhibitors might offer new opportunities for treatment of ALS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2004.02700.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!