Liposomes, which are biodegradable and essentially non-toxic vehicles, can encapsulate both hydrophilic and hydrophobic materials, and are utilized as drug carriers in drug delivery systems. In addition, liposomes can be used to carry radioactive compounds as radiotracers can be linked to multiple locations in liposomes. One option is the hydrated compartment inside the liposome, another the lipid core into which especially hydrophobic conjugates can be attached, and the third option is the outer lipid leaflet where molecules can be bound by covalent linkage. Delivery of agents to the reticuloendothelial system (RES) is easily achieved, since most conventional liposomes are trapped by the RES. For the purpose of delivery of agents to target organs other than RES, long-circulating liposomes have been developed by modifying the liposomal surface. Understanding of the in vivo dynamics of liposome-carried agents is required for the evaluation of the bioavailability of drugs encapsulated in liposomes. In this review, we focus on the in vivo trafficking of liposomes visualized by positron emission tomography (PET) and discuss the characteristics of liposomes that affect the targeting of drugs in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612043383467 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!