The Multiplexed Proteomics (MP) technology is a new approach that permits quantitative, multicolor fluorescence detection of proteins in one-dimensional or two-dimensional gels. This methodology allows for multiplexed identification and differential analysis of phosphoproteins, glycoproteins, and total proteins within a single gel electrophoresis experiment. Here the MP system was applied to the differential proteomic analysis of pregnancy-induced refractoriness to breast cancer using a rat model system. Differential analyses identified multiple proteins with altered phosphorylation, glycosylation, or protein expression patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200400957DOI Listing

Publication Analysis

Top Keywords

fluorescence detection
8
phosphorylation glycosylation
8
proteomic analysis
8
breast cancer
8
multiplexed fluorescence
4
detection phosphorylation
4
glycosylation total
4
total protein
4
protein proteomic
4
analysis breast
4

Similar Publications

Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China.

Adv Biotechnol (Singap)

February 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine deltacoronavirus (PDCoV) and Swine acute diarrhea syndrome coronavirus (SADS-CoV) rank among the most frequently encountered swine enteric coronaviruses (SECoVs), leading to substantial economic losses to the swine industry. The availability of a rapid and highly sensitive detection method proves beneficial for the monitoring and surveillance of SECoVs. Based on the N genes of four distinct SECoVs, a novel detection method was developed in this study by combining recombinant enzyme polymerase isothermal amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) 12a.

View Article and Find Full Text PDF

A Supramolecular Fluorescent Chemosensor Enabling Specific and Rapid Quantification of Norepinephrine Dynamics.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.

Host-guest supramolecular fluorescence probes have garnered significant attention in the detection and sensing of bioactive molecules due to their functionalization potential, adjustable physical properties, and high specificity. However, such probes that reliably, rapidly, and specifically measure neurotransmitter dynamics at the cellular and in vivo level have yet to be reported. Herein, we present a supramolecular fluorescent chemosensor designed for norepinephrine (NE) detection, showing an exceptional response and specificity through host-guest complexation.

View Article and Find Full Text PDF

Aptamer-Modified TiCT MXene Fluorescent Nanoprobe for Monitoring ATP and GTP during a Mild-Photothermal-Activated Nucleolar Stress Process in Living Cells.

Anal Chem

January 2025

Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China.

Understanding the molecular energy metabolism of single cells in the nucleolus stress response induced by mild-photothermal therapy (mPTT) is of great importance for investigating the photothermal lethal mechanism. Herein, we successfully fabricated a "turn-on"-type fluorescent nanoprobe based on the fluorescently labeled aptamers (FAM-ATP-apt and Cy3-GTP-apt) and TiCT MXene. When the adapters on the nanoprobes bonded to intracellular ATP and GTP, the fluorescence of the nanoprobes was restored.

View Article and Find Full Text PDF

Simultaneous measurement of fentanyl, fentanyl analogues and other drugs of abuse by multiplex bead assay.

Toxicol Mech Methods

January 2025

Centers for Disease Control and Prevention, Division of Science Integration, Risk Evaluation Branch, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.

Quantification of illicit drugs and controlled substances, in urine or as surface contamination, is often performed using expensive analytical techniques such as liquid chromatography with tandem mass spectrometry (LC-MS/MS). A time and cost-effective semi-quantitative surface-wipe and urine screening multiplex immunoassay for fentanyl and its analogues was developed in this investigation. We previously created a surface wipe multiplex immunoassay for methamphetamine, caffeine, cocaine, tetrahy-drocannabinol (THC) and oxycodone.

View Article and Find Full Text PDF

Ultrasmall and highly fluorescent gold nanoclusters (Au NCs) have been widely used for the construction of sensing and imaging platforms. Specifically, through a combination of surface functionalization and spectral analysis and/or imaging techniques, effective intracellular detection and imaging are realized. In this review, we summarize the recently adopted intracellular analysis and imaging events with Au NCs-based probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!