During industrial processes, the dairy organism Streptococcus thermophilus is exposed to stress conditions. Its ability to survive and grow in an aerobic environment indicates that it must possess defensive mechanisms against reactive oxygen species. To identify the genes involved in oxidative stress defence, a collection of mutants was generated by random insertional mutagenesis and screened for menadione sensitivity and resistance. Results obtained for resistant clones allowed the identification of eight loci. The insertions affected genes whose homologues in other bacteria were previously identified as being involved in stress response(deoB, gst) or transcription regulation (rggC) and five ORFs of unknown function. The tolerance of the eight mutants to air-exposure, methyl viologen and H2O2 was studied. Real-time quantitative PCR was used to analyse the transcript level of mutated genes and revealed that most were down-regulated during oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-004-0712-2DOI Listing

Publication Analysis

Top Keywords

streptococcus thermophilus
8
oxidative stress
8
characterization oxidative
4
oxidative stress-resistant
4
stress-resistant mutants
4
mutants streptococcus
4
thermophilus cnrz368
4
cnrz368 industrial
4
industrial processes
4
processes dairy
4

Similar Publications

Introduction: The free exopolysaccharide (f-EPS) produced by is a natural texture modifier and has a variety of prebiotic activities. Our previous studies showed f-EPS production from 937 was increased 2-fold in the presence of 15 mM of glutamate, isoleucine, and histidine in the chemically defined medium.

Methods: In this study, we used transcriptomics and qPCR to further explore the specific mechanism of the enhanced effect of 3 amino acids on the f-EPS biosynthesis of 937.

View Article and Find Full Text PDF

The therapeutic effects of probiotics in patients with traumatic brain injury (TBI) remain unclear. This study aimed to investigate the effects of probiotic supplementation on cell adhesion molecules, oxidative stress, and antioxidant parameters in TBI patients. This randomized, double-blind, placebo-controlled trial included 46 TBI patients who were randomly assigned to receive either a probiotic supplement (n = 23) or a placebo (n = 23) for 14 days.

View Article and Find Full Text PDF

is widely used as a starter culture in the production of cheese, yoghurt and various cultured dairy products, which holds considerable significance in both research and practical applications within the food industry. Throughout history, the taxonomy of has undergone several adjustments and revisions. In 1984, based on the result of DNA-DNA hybridization, was reclassified as subsp.

View Article and Find Full Text PDF

The effect of L. on yogurt: a comprehensive study of physicochemical, microbiological, sensory, and textural properties.

Front Nutr

January 2025

Department of Plant and Animal Production, Vocational College of Technical Sciences, Atatürk University, Erzurum, Türkiye.

Objectives: The objective of this study was to investigate the effects of the addition of L. (coriander) on the physicochemical, sensory, textural and microbiological properties of yogurt.

Methods: To conduct this study, 4 types of yogurt were prepared as control (C0) and with 1% (C1), 2% (C2) and 3% (C3) coriander, and the yogurts were analyzed on specific storage days.

View Article and Find Full Text PDF

The Purpose: Of the study was to assess oral microbiocenosis changes in participants of microgravity modeling in a control group and using prophylaxis in the form of a probiotic supplement with 1.0·10 CFU of strain in one lozenge and a dairy product containing not less than 1·10 CFU of s strain in one gram.

Materials And Methods: The study included 15 participants aged 25-40 years from the "Dry Immersion-2018" experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!