AI Article Synopsis

  • - The complete genome sequencing of Burkholderia mallei ATCC 23344 reveals important details about its pathogenicity and evolutionary background, especially in light of concerns over its potential use as a biological weapon.
  • - The analysis found several virulence factors, confirmed through comparison and testing in a hamster model, indicating how the bacterium causes disease.
  • - Additionally, the genome shows significant structural changes and contains a large number of simple sequence repeats, which might lead to antigenic variation, complicating the host's immune response against B. mallei infections.

Article Abstract

The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression profiling of the bacterium in hamster liver in vivo. The genome contains numerous insertion sequence elements that have mediated extensive deletions and rearrangements of the genome relative to Burkholderia pseudomallei. The genome also contains a vast number (>12,000) of simple sequence repeats. Variation in simple sequence repeats in key genes can provide a mechanism for generating antigenic variation that may account for the mammalian host's inability to mount a durable adaptive immune response to a B. mallei infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC521142PMC
http://dx.doi.org/10.1073/pnas.0403306101DOI Listing

Publication Analysis

Top Keywords

burkholderia mallei
8
simple sequence
8
sequence repeats
8
genome
7
structural flexibility
4
flexibility burkholderia
4
mallei
4
mallei genome
4
genome complete
4
complete genome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!