Hydrogen peroxide inhibits photosynthetic O2 evolution. It has been shown that H2O2 destroys the function of the oxygen-evolving complex (OEC) in some chloroplast and Photosystem (PS) II preparations causing release of manganese from the OEC. In other preparations, H2O2 did not cause or caused only insignificant release of manganese. In this work, we tested the effect of H2O2 on the photosynthetic electron transfer and the state of OEC manganese in a native system (intact cells of the cyanobacterium Anabaena variabilis). According to EPR spectroscopy data, H2O2 caused an increase in the level of photooxidation of P700, the reaction centers of PS I, and decreased the rate of their subsequent reduction in the dark by a factor larger than four. Combined effect of H2O2, CN-, and EDTA caused more than eight- to ninefold suppression of the dark reduction of P700+. EPR spectroscopy revealed that the content of free (or loosely bound) Mn2+ in washed cyanobacterial cells was ~20% of the total manganese pool. This content remained unchanged upon the addition of CN- and increased to 25-30% after addition of H2O2. The content of the total manganese decreased to 35% after the treatment of the cells with EDTA. The level of the H2O2-induced release of manganese increased after the treatment of the cells with EDTA. Incubation of cells with H2O2 for 2 h had no effect on the absorption spectra of the photosynthetic pigments. More prolonged incubation with H2O2 (20 h) brought about degradation of phycobilins and chlorophyll a and lysis of cells. Thus, H2O2 causes extraction of manganese from cyanobacterial cells, inhibits the OEC activity and photosynthetic electron transfer, and leads to the destruction of the photosynthetic apparatus. H2O2 is unable to serve as a physiological electron donor in photosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:biry.0000040227.66714.19 | DOI Listing |
J Control Release
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:
Most subunit antigens often induce suboptimal vaccination efficacy, possibly due to their low immunogenicity and limited ability to migrate to lymph nodes (LNs). Although the emergence of nanovaccine has significantly addressed these challenges, most formulations still require specific biological or chemical modifications to the carrier or antigen for efficient antigen loading. In this study, we report a Pickering emulsion-based nanovaccine that directly utilized antigens and adjuvants as stabilizers, effectively amplifying immune responses without additional physicochemical alterations.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
The cGAS-STING pathway is pivotal in initiating antitumor immunity. However, tumor metabolism, particularly glycolysis, negatively regulates the activation of the cGAS-STING pathway. Herein, Mn galvanic cells (MnG) are prepared via liquid-phase exfoliation and in situ galvanic replacement to modulate tumor metabolism, thereby enhancing cGAS-STING activation for bidirectional synergistic H-immunotherapy.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India.
Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
The stimulator of interferon genes (STING) pathway exhibits great potential in remodeling the immunosuppressive tumor microenvironment and initiating antitumor immunity. However, how to effectively activate STING and avoid undesired toxicity after systemic administration remains challenging. Herein, platinum(IV)-backboned polymer prodrug-coated manganese oxide nanoparticles (DHP/MnONP) with pH/redox dual responsive properties are developed to precisely release cisplatin and Mn in the tumor microenvironment and synergistically amplify STING activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!