The dark reduction of photooxidized bacteriochlorophyll (P+) by photoreduced secondary quinone acceptor (QB-) in isolated reaction centers (RC) from the bacterium Rhodobacter sphaeroides wild type and mutant strain SA(L223) depending on the duration of light activation of RC was studied. The kinetics of the dark reduction of P+ decreased with increasing light duration, which is probably due to conformational changes occurring under prolonged light activation in RC from the wild type bacterium. In RC from bacteria of the mutant strain in which protonatable amino acid Ser L223 near QB is substituted by Ala, the dependence of reduction kinetics of P+ on duration of light was not observed. Such dependence, however, became observable after addition of cryoprotectors, namely glycerol and dimethylsulfoxide, to the RC samples from the mutant strain. It was concluded that substitution of Ser L223 with Ala disturbs the native mechanism of electrostatic stabilization of the electron in the RC quinone acceptor site. At the same time, an additional modification of RC hydrogen bonds by glycerol and dimethylsulfoxide probably includes various possibilities for more effective time delay of the electron on QB.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:biry.0000040221.43531.00DOI Listing

Publication Analysis

Top Keywords

quinone acceptor
12
wild type
12
duration light
12
light activation
12
mutant strain
12
stabilization electron
8
electron quinone
8
reaction centers
8
centers bacterium
8
bacterium rhodobacter
8

Similar Publications

Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction.

View Article and Find Full Text PDF

Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force () across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required.

View Article and Find Full Text PDF

Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium . In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) complexes is observable.

View Article and Find Full Text PDF

The natural herbicide rhein targets photosystem I.

Sci Rep

December 2024

Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.

The natural anthraquinone rhein has been identified as a novel herbicide with a potentially new mode of action using a generative AI system for functional molecules discovery. Its herbicidal activity was light-dependent and resulted in rapid burndown symptoms on leaves of treated plants. Rhein interferes with photosynthesis by acting as an electron diverter at the level of photosystem I (PSI).

View Article and Find Full Text PDF

Objective: Various plants have been reported to contain compounds that promote the transcriptional activity of Nuclear factor erythroid 2-related factor 2 (Nrf2) to induce a set of xenobiotic detoxifying enzymes, such as NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1), via the antioxidant response element (ARE). While conventional methods for evaluating Nrf2 induction potency include measurement of NQO1 activity, an ARE luciferase reporter assay was recently developed to specifically assess Nrf2 induction potency of compounds of interest. In this study, we compared the abilities of these two assays to evaluate and determine Nrf2 induction potency of plant-derived compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!