The isolation of subfractions of cell membranes on the basis of their solubility in non-ionic detergents has led to the discovery of lipid domain structure in membranes. Detergents used for this purpose include Triton, Brij, Lubrol and CHAPS. Different lipid constituents are known to resist solubilization by different detergents and the resulting fractions may associate with different membrane proteins. In general, the detergent-resistant membrane fractions tend to be dominated by saturated molecular species of sphingomyelin and phosphatidylcholine and invariably include significant proportions of cholesterol. The lipid composition is consistent with formation of liquid-ordered phases. The present evidence favours a model in which the lateral segregation of membrane proteins takes place on the basis of their affinity for liquid-ordered lipid domains within the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4757-5806-1_4 | DOI Listing |
AAPS PharmSciTech
January 2025
School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico.
Metabolic syndrome (MS) has a high prevalence, with an estimated one-quarter of the world population affected by this pathological condition. Among the diseases of this syndrome are dysregulation of lipids, hypertension, and insulin resistance. Unfortunately, available drugs in the market used for treating MS, as almost 75% of all drugs, are highly insoluble, presenting a significant demand for strategies to increase their solubility.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
The extraction of plant essential oils (EOs) and analysis by gas chromatography coupled to mass spectrometry (GC-MS) are standard methods when studying aromatic plants and the chemical composition of EOs. Here, two simple methods for the extraction of EO compounds from leaves of Thymus vulgaris are described. Organic solvent extraction and solid-phase microextraction (SPME), respectively, are used and the results of the GC-MS analyses are compared.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, PR China. Electronic address:
Small-molecule pectin (SMP) extracted from the leaves of Premna ligustroides Hemsl, with a molecular weight range of 5000-35,000 Da, has demonstrated anti-inflammatory and lipid-lowering properties in vitro. This study explored the effects of SMP on hypercholesterolemia in mice, with a focus on inflammation, lipid profiles, and cholesterol metabolism. Mice received SMP at doses of 607, 303, and 152 mg/kg body weight.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China. Electronic address:
Ethnopharmacological Relevance: Inonotus obliquus has also been used as a traditional folk medicine in Europe and Northeastern China to treat metabolic diseases. Betulinic acid (BA) is a major ingredient with anti-diabetic property derived from I. obliquus, however, its bioavailability is limited.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India. Electronic address:
The study emphasises how ubiquitous persistent organic pollutants (POPs) are and how terrible they are for the environment, specifically because of their tendency to build up in living things and cause a variety of health problems, including diabetes, obesity, and cardiovascular disorders. Due to POPs affinity for lipid-rich tissues, they accumulate in a variety of organs, where they cause metabolic disruption and initiate various anabolic pathways. Studies that use fish as a model organism clarify the metabolic effects of POPs, demonstrating non-adipose lipid accumulation and abnormal glucose homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!