A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating action potential thresholds from neuronal time-series: new metrics and evaluation of methodologies. | LitMetric

Estimating action potential thresholds from neuronal time-series: new metrics and evaluation of methodologies.

IEEE Trans Biomed Eng

Laboratory for Neuroengineering and the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA.

Published: September 2004

The estimation of action potential thresholds is a subjective process, which we quantified by surveying experienced electrophysiologists via a software application that allowed them to select action potential thresholds from several presented neuronal time series. Independent of this survey, we derived two nonparametric techniques for automating the detection of an action potential threshold from the time-series of intracellular recordings. Both methods start with a phase-space representation of the action potential (dV/dt versus V). Method I detects the maximum slope in the phase space, while Method II detects the maximum second derivative in the phase space. These two methods, as well as five additional methods in the literature, were tested on three data sets representing a variety of action potential shapes, the same three datasets that were used in the electrophysiologist survey. The database of user responses was used to provide an external benchmark against which to statistically evaluate all seven methods. Method II, as well as the curvature-based Methods VI and VII, provided the best results tracking both absolute and relative changes in threshold versus the other nonparametric methods (peak of second and third time derivatives). The one parametric method evaluated, detection of threshold crossing of the first temporal derivative, performed comparably to these methods, provided that an appropriate threshold was chosen. We conclude that Methods II, VI, and VII were the best methods evaluated due to their performance across a wide range of action potential shapes and the fact that they are nonparametric. Our user database of responses may be useful to other investigators interested in developing additional methods in that it quantifies what has often been a subjective estimate.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2004.827531DOI Listing

Publication Analysis

Top Keywords

action potential
28
potential thresholds
12
methods
10
method detects
8
detects maximum
8
phase space
8
additional methods
8
potential shapes
8
methods vii
8
potential
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!