The zebrafish caudal fin constitutes an important model for studying the molecular basis of tissue regeneration. The cascade of genes induced after amputation or injury, leading to restoration of the lost fin structures, include those responsible for wound healing, blastema formation, tissue outgrowth, and patterning. We carried out a systematic study to identify genes that are up-regulated during "initiation" (1 day) and "outgrowth and differentiation" (4 days) of fin regeneration by using two complementary methods, suppression subtraction hybridization (SSH) and differential display reverse transcriptase polymerase chain reaction (DDRT-PCR). We obtained 298 distinct genes/sequences from SSH libraries and 24 distinct genes/sequences by DDRT-PCR. We determined the expression of 54 of these genes using in situ hybridization. In parallel, gene expression analyses were done in zebrafish embryos and early larvae. The information gathered from the present study provides resources for further investigations into the molecular mechanisms of fin development and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20153DOI Listing

Publication Analysis

Top Keywords

zebrafish caudal
8
caudal fin
8
distinct genes/sequences
8
fin
5
screen genes
4
genes differentially
4
differentially expressed
4
regeneration
4
expressed regeneration
4
regeneration zebrafish
4

Similar Publications

The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial.

View Article and Find Full Text PDF

Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins.

View Article and Find Full Text PDF

Objective: Obesity has become one of the major public health issues and is associated with various comorbidities, including type 2 diabetes mellitus, dyslipidemia, and hypertension. Lychee seeds are considered promising ingredients for developing functional foods owing to their nutraceutical properties and phytochemical composition. This study aimed to induce obesity in zebrafish () through a hyperlipidic diet supplemented with different concentrations of lychee seed flour and to evaluate its effects on adipose tissue, biochemical parameters, oxidative stress, and caudal fin regeneration.

View Article and Find Full Text PDF

Exploring the Antimycobacterial Potential of Podocarpusflavone A from : In Vitro and In Vivo Insights.

Pharmaceuticals (Basel)

November 2024

Laboratório de Produtos Bioativos (LPBio), Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé 27930-560, RJ, Brazil.

: Tuberculosis (TB) is one of the leading infectious causes of death worldwide, highlighting the importance of identifying new anti-TB agents. In previous research, our team identified antimycobacterial activity in leaf extract; therefore, this study aims to conduct further exploration of its potential. : Classical chromatography was applied for fractionation and spectrometric techniques were utilized for chemical characterization.

View Article and Find Full Text PDF

Novel peptide inhibitor of matrix Metalloproteinases-1 from pufferfish skin collagen hydrolysates and its potential Photoprotective activity via the MAPK/AP-1 signaling pathway.

J Photochem Photobiol B

January 2025

Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China. Electronic address:

Takifugu bimaculatus, a pufferfish species farmed in Fujian Province, is known for its non-toxic flesh and collagen-rich skin. We identified a novel collagen-derived matrix metalloproteinase 1 (MMP-1) inhibitory peptide, from T. bimaculatus skin with potent anti-photoaging properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!