We demonstrate the fabrication of model scaffolds and extracellular matrices using multiphoton excited photochemistry. This method is three-dimensional in nature and has excellent biocompatibility. Crosslinked matrices were fabricated from the proteins fibrinogen, fibronectin, and concanavalin A using two-photon rose bengal photoactivation and the relatives rates were determined. Immunofluorescence labeling of fibrinogen and fibronectin indicated retention of bioactivity following the multiphoton crosslinking process. Using the fluorescence recovery after photobleaching method, we measured the lateral mobility of fluorescent dyes of different mass and chemistry in order to model the behavior of therapeutic agents and bioactive molecules and found diffusion coefficients within these fabricated structures to be on the order of 10(-9)-10(-10) cm(2)/s, or approximately three to four orders of magnitude slower than in free solution. The precise diffusion coefficients can be smoothly tuned by varying the laser exposure during the fabrication of the matrix, which results in both an increase in crosslink density as well as protein concentration in the matrix. Terminal crosslink density is achieved at integrated high exposure dose and the relative fabrication rates were determined for these proteins. For all the proteins, the range of diffusion coefficients between the threshold for fabrication and the terminal limit is correlated with the change in matrix mesh size as determined by Flory-Rehner swelling analysis. Both normal Fickian as well as hindered anomalous diffusion is observed depending on specific molecular interactions of the tracer dyes and protein host. (c) 2004 Wiley Periodicals, Inc. J Biomed Mater Res 71A: 359-368, 2004.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.30175 | DOI Listing |
Anal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
The film water, with an exceptional capacity to maintain a premelting, liquid-like state even under subzero conditions, provides a potential dynamic conduit for the movement of water in frozen soils. However, the distinctive structural and dynamic characteristics of film water have not been comprehensively elucidated. In this study, molecular dynamics (MD) simulations were conducted to examine the freezing of a system containing ice, water, silica, and gas.
View Article and Find Full Text PDFACS Nano
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Ocean Environment Institute, Oceanic Consulting and Trading, Seoul, Republic of Korea.
This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!