Electroencephalographic studies of skilled psychomotor performance.

J Clin Neurophysiol

Department of Kinesiology and Center for Neural and Cognitive Sciences, University of Maryland, College Park, Maryland 20742-2611, USA.

Published: November 2004

Measurements based on the EEG have featured prominently in shaping present-day concepts of the neurocognitive aspects of skilled performance. The techniques include measurements of spectral power, interelectrode coherence, event-related potential components such as the P300, slow potentials, and the method of cognitive inference. The advantages offered by EEG-based approaches lies in their spatiotemporal resolution (potentially 1 mm and less than 1 millisecond, respectively) and the potential to preserve ecological validity, i.e., to obtain measurements of cortical function under the same conditions that the task is normally performed. These studies indicate that activity is reduced in specific regions of the cerebral cortex of experts relative to that observed in novices. These changes occur over time as a result of practice. The authors argue that such cortical change results in less attentional demand and less cognitive interference with motor planning and execution. The findings attest to the plasticity of the central nervous system when one is engaged in goal-directed learning, and hold implications for understanding how the nervous system acquires voluntary skills, whether in the context of the training of an athlete or the rehabilitation of a patient who has lost motor skills due to a disease of the nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004691-200405000-00003DOI Listing

Publication Analysis

Top Keywords

nervous system
12
electroencephalographic studies
4
studies skilled
4
skilled psychomotor
4
psychomotor performance
4
performance measurements
4
measurements based
4
based eeg
4
eeg featured
4
featured prominently
4

Similar Publications

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

Brain macrophages in vascular health and dysfunction.

Trends Immunol

December 2024

Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland. Electronic address:

Diverse macrophage populations inhabit the rodent and human central nervous system (CNS), including microglia in the parenchyma and border-associated macrophages (BAMs) in the meninges, choroid plexus, and perivascular spaces. These innate immune phagocytes are essential in brain development and maintaining homeostasis, but they also play diverse roles in neurological diseases. In this review, we highlight the emerging roles of CNS macrophages in regulating vascular function in health and disease.

View Article and Find Full Text PDF

A highly sensitive and rapid LC-MS/MS method was developed and validated for the quantification of dexamethasone in rat plasma and brain tissue. Protein precipitation method was used for sample preparation. The separation of dexamethasone and the IS (labetalol) was achieved on an Atlantis dC column using an isocratic mobile phase (10 mM ammonium formate and acetonitrile, 25/75, v/v) delivered at 0.

View Article and Find Full Text PDF

The Gut-Brain Axis (GBA) is a crucial link between the gut microbiota and the central nervous system. Xenobiotics, originating from diverse sources, play a significant role in shaping this interaction. This review examines how these compounds influence neurotransmitter dynamics within the GBA.

View Article and Find Full Text PDF

The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis.

Mitochondrion

December 2024

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!