Multivariate threshold model analysis of clinical mastitis in multiparous norwegian dairy cattle.

J Dairy Sci

Department of Animal and Aquacultural Sciences, Agricultural University of Norway, P. O. Box 5025, N-1432 As, Norway.

Published: September 2004

A Bayesian multivariate threshold model was fitted to clinical mastitis (CM) records from 372,227 daughters of 2411 Norwegian Dairy Cattle (NRF) sires. All cases of veterinary-treated CM occurring from 30 d before first calving to culling or 300 d after third calving were included. Lactations were divided into 4 intervals: -30 to 0 d, 1 to 30 d, 31 to 120 d, and 121 to 300 d after calving. Within each interval, absence or presence of CM was scored as "0" or "1" based on the CM episodes. A 12-variate (3 lactations x 4 intervals) threshold model was used, assuming that CM was a different trait in each interval. Residuals were assumed correlated within lactation but independent between lactations. The model for liability to CM had interval-specific effects of month-year of calving, age at calving (first lactation), or calving interval (second and third lactations), herd-5-yr-period, sire of the cow, plus a residual. Posterior mean of heritability of liability to CM was 0.09 and 0.05 in the first and last intervals, respectively, and between 0.06 and 0.07 for other intervals. Posterior means of genetic correlations of liability to CM between intervals ranged from 0.24 (between intervals 1 and 12) to 0.73 (between intervals 1 and 2), suggesting interval-specific genetic control of resistance to mastitis. Residual correlations ranged from 0.08 to 0.17 for adjacent intervals, and between -0.01 and 0.03 for nonadjacent intervals. Trends of mean sire posterior means by birth year of daughters were used to assess genetic change. The 12 traits showed similar trends, with little or no genetic change from 1976 to 1986, and genetic improvement in resistance to mastitis thereafter. Annual genetic change was larger for intervals in first lactation when compared with second or third lactation. Within lactation, genetic change was larger for intervals early in lactation, and more so in the first lactation. This reflects that selection against mastitis in NRF has emphasized mainly CM in early first lactation, with favorable correlated selection responses in second and third lactations suggested.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.S0022-0302(04)73436-0DOI Listing

Publication Analysis

Top Keywords

genetic change
16
threshold model
12
second third
12
intervals
11
multivariate threshold
8
clinical mastitis
8
norwegian dairy
8
dairy cattle
8
calving interval
8
lactation
8

Similar Publications

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.

View Article and Find Full Text PDF

Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation.

View Article and Find Full Text PDF

A recent publication by Bornes and colleagues explored the impact of the estrous cycle on mammary tumor response to neoadjuvant chemotherapy (NAC). Using genetically engineered mouse models, Bornes and colleagues revealed that chemotherapy is less effective when initiated during the diestrus stage compared to during the estrus stage. A number of changes during diestrous were identified that may reduce chemosensitivity of mammary tumors: an increased mesenchymal state of breast cancer cells during diestrous, decreased blood vessel diameters, and higher numbers of macrophages in the tumor microenvironment.

View Article and Find Full Text PDF

Preparing the 2025 revision of the International Code of Nomenclature of Prokaryotes.

Int J Syst Evol Microbiol

January 2025

Department of Infectious Disease, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, P.O. Box 7193, SE-402 34 Gteborg, Sweden.

The editorial Board of the (ICNP) - the Prokaryotic Code - has compiled already ratified proposed emendations of the ICNP, together with additional editorial changes and clarifications. These were implemented in a draft 2025 revision of the . To comply with Articles 13(b)(4) and 4(d) of the statutes of the International Committee on Systematics of Prokaryotes (ICSP), a public discussion of the document will start on 1 January (or later if required) 2025, to last for 6 months.

View Article and Find Full Text PDF

Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!