Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanisms responsible for resistance of tumors to death receptor-mediated damage by cytotoxic lymphocytes are not well understood. Uveal melanoma cells expressed Fas but were insensitive to Fas triggering induced by bystander cytotoxic T lymphocytes or a Fas-specific agonistic antibody; this could not be ascribed to tumor counterattack against T cells or general resistance of the tumors to apoptosis. Treatment with inhibitors of metalloproteases rendered uveal melanomas sensitive to Fas-mediated cytotoxicity. Metalloprotease inhibitors did not affect the expression of Fas but increased the surface expression of Fas ligand (FasL), which correlated with the disappearance of soluble FasL from culture supernatants of tumor cells. FasL eluted from the surface of uveal melanomas specifically inhibited cytotoxic T lymphocyte lysis of tumor cells pretreated with an inhibitor of metalloproteases. In addition to uveal melanomas, a number of other tumor cell lines of various cellular origins were sensitized to Fas-mediated cytotoxicity by metalloprotease inhibitors. Our results show that autocrine secretion of FasL shields tumor cells from Fas-mediated killing by cytotoxic lymphocytes. This defines a novel mechanism of tumor escape from immune surveillance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-0508 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!