Synthetic single-stranded oligodeoxynucleotides (15-30 bp) containing CpG motifs and phosphorothioate backbones (CpG s-ODN), immune complexes consisting of anti-nucleosome mAbs and mammalian chromatin (chromatin IC), and immune complexes consisting of anti-hapten mAbs and haptenated-double stranded DNA fragments ( approximately 600 bp) can all effectively stimulate transgenic B cells expressing a rheumatoid factor receptor by a TLR9-dependent process. However, differential sensitivity to both s-ODN and small molecule inhibitors suggests that stimulatory CpG sODN and chromatin IC may either access TLR9 via different routes or depend on discrete activation parameters. These data have important implications regarding the therapeutic application of TLR9 inhibitors to the treatment of systemic autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1179/096805104225005850 | DOI Listing |
Front Immunol
January 2025
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Donor-specific antibodies (DSAs) targeting mismatched human leukocyte antigen (HLA) molecules are one of the principal threats to long-term graft survival in solid organ transplantation. However, many patients with long-term circulating DSAs do not manifest rejection responses, suggesting a degree of heterogeneity in their pathogenicity and related functional activity. Immunologic risk stratification of transplant recipients is complicated by challenges intrinsic to defining alloantibody responses that are potentially pathogenic versus those that are not.
View Article and Find Full Text PDFNanotheranostics
January 2025
Translational Research Laboratory, Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
Pleural tuberculosis (pTB) is a diagnostic challenge because of its non-specific clinical features, lack of accurate diagnostic tools and paucibacillary nature of the disease. We, here describe the development of a novel magnetic nanoparticle antibody-conjugate and aptamer-based assay (MNp-Ab-Ap assay) targeting 4 different (. ) antigens (GlcB, MPT51, MPT64 and CFP-10) for pTB diagnosis.
View Article and Find Full Text PDFAdv Gerontol
January 2025
Saint-Petersburg Institute of Bioregulation and Gerontology, 3 Dinamo av., St. Petersburg 197110, Russian Federation, e-mail:
Cellular aging is the inability of structures to proliferate (further division) and repair damage while maintaining metabolic activity. The key well-known factors of cellular aging are the processes of DNA damage, telomere shortening, the development of oxidative stress and epigenetic changes. The above factors provoke the development of a pro-inflammatory environment, leading to errors in gene expression and metabolic dysregulation, thereby affecting the development of age-related diseases that contribute to pathological changes in the functions of tissues and organs.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
International Research and Innovation in Medicine Program, Cedars - Sinai Medical Center, Los Angeles, CA, USA.
Purpose: Our study aimed to assess the effects of anticancer 4-thiazolidinone-based free water-insoluble therapeutics Les-3288 and Les-3833 and their waterborne complexes with branched PEG-containing polymeric carriers (A24-PEG550 and A24-PEG750) on immune response.
Methods: Human peripheral blood was used to study in vitro lymphocyte proliferative function, leukocyte phagocytic activity and respiratory burst, and cytokine production.
Results: The binding of the polymer to the anticancer drug Les-3288, which is intended to mitigate the immunosuppressive effects of the free drug on the proliferative activity of T lymphocytes and T-dependent B cells, demonstrated comparable efficacy for both A24-PEG750 and A24-PEG550 nanocarriers.
Biosens Bioelectron
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
Conventional fluorescent probes with weak fluorescence signals and aggregation-caused quenching effect limits in biomarkers detection, thus requiring many labeled target molecules to combine their output to achieve higher signal-to noise. Here, we harness a "immune-sandwich" based affinity sensor with development of ultrabright aggregation-induced emission luminogens (AIEgens) microspheres as signal reporter. The fabricated sensor can simultaneously permit triple detection formats by naked eye, spectrum, and computer vision counting (termed "NeSCV sensor").
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!