The hexadentate, and ditopic ligand 2,5-bis([2,2']bipyridin-6-yl)pyrazine yields a chiral, tetrameric, square-shaped, self-assembled species upon complexation with Fe2+ ions. The racemate of this complex was resolved with antimonyl tatrate as the chiral auxiliary. The purity of the enantiomer was determined by NMR spectroscopy, by using a chiral, diamagnetic shift reagent, and by circular dichroism (CD). The CD spectrum was also calculated by time-dependent density functional theory, and the correlation that was found between CD spectrum and configuration was confirmed by X-ray cristallography. When a "chiralised" version of the ligand was used instead, the corresponding iron complex was obtained in diastereomerically pure form.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200400399DOI Listing

Publication Analysis

Top Keywords

synthesis stereochemical
4
stereochemical properties
4
chiral
4
properties chiral
4
chiral square
4
square complexes
4
complexes ironii
4
ironii hexadentate
4
hexadentate ditopic
4
ditopic ligand
4

Similar Publications

Synthesis of Atropisomeric Quinazolin-4-one Derivatives Based on Remote H/D and C/C Discrimination.

J Org Chem

December 2024

Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan.

Both enantiomers of 2-ethylquinazolin-4-ones bearing -CHO/CDO and CHO/CHO phenyl groups at the N3 position were prepared. These are isotopic atropisomeric compounds based on a remote and conformationally flexible H/D and C/C discrimination, and it was found that a CHCl solution of -CHO/CDO derivative shows a slight specific optical rotation. Furthermore, diastereomeric quinazolinone derivatives bearing a chiral carbon were prepared, and their stereochemical purities and rotational stability as well as the isotopic atropisomerism were verified by H NMR and chiral high-performance liquid chromatography (HPLC) analyses.

View Article and Find Full Text PDF

Hydroalkylation of terminal alkynes is a powerful approach to the synthesis of disubstituted alkenes. However, its application is largely unexplored in the synthesis of α,β-unsaturated carbonyls, which are common among synthetic intermediates and biologically active molecules. The thermodynamically less stable -isomers of activated alkenes have been particularly challenging to access because of their propensity for isomerization and the paucity of reliable -selective hydroalkylation methods.

View Article and Find Full Text PDF

Total Synthesis of Exiguolide Stereoisomers: Impact of Stereochemical Permutation on Reactivity, Conformation, and Biological Activity.

J Org Chem

December 2024

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.

(-)-Exiguolide is a marine macrolide natural product with potent anticancer activity. In this study, the total synthesis of exiguolide stereoisomers, (9)-exiguolide, (9,13)-exiguolide, and (9,13,19)-exiguolide, was achieved by capitalizing on our macrocyclization/transannular pyran cyclization strategy. The impact of the stereochemical permutation on the reactivity of advanced intermediates, the conformation of the macrocyclic skeleton, and the antiproliferative activity against human cancer cells were investigated in detail.

View Article and Find Full Text PDF

We present a comprehensive account of our efforts directed towards the synthesis of sacubitril, a neprilysin inhibitor used in combination with valsartan and marketed as Entresto™. Our initial approach to the formal synthesis of sacubitril employed a chiral pool strategy, utilizing (S)-pyroglutamic acid as a key building block and Cu(I)-mediated Csp2-Csp3 cross-coupling as a key transformation. Further investigations led to the development of chiral amine transfer (CAT) reagents-based stereoselective synthesis.

View Article and Find Full Text PDF

Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!