While cardiac function in the mature heart is dependent on a properly functioning His-Purkinje system, the early embryonic tubular heart efficiently pumps blood without a distinct specialized conduction system. Although His-Purkinje system precursors have been identified using immunohistological techniques in the looped heart, little is known whether these precursors function electrically. To address this question, we used high-resolution optical mapping and fluorescent dyes with two CCD cameras to describe the motion-corrected activation patterns of 76 embryonic chick hearts from tubular stages (stage 10) to mature septated hearts (stage 35). Ventricular activation in the tubular looped heart (stages 10-17) using both calcium-sensitive fluo-4 and voltage-sensitive di-4-ANEPPS shows sequentially uniform propagation. In late looped hearts (stages 18-22), domains of the dorsal and lateral ventricle are preferentially activated before spreading to the remaining myocardium and show alternating regions of fast and slow propagation. During stages 22-26, action potentials arise from the dorsal ventricle. By stages 27-29, action potential breakthrough is also observed at the right ventricle apex. By stage 31, activation of the heart proceeds from foci at the apex and dorsal surface of the heart. The breakthrough foci correspond to regions where putative conduction system precursors have been identified immunohistologically. To date, our study represents the most detailed electrophysiological characterization of the embryonic heart between the looped and preseptated stages and suggests that ventricular activation undergoes a gradual transformation from sequential to a mature pattern with right and left epicardial breakthroughs. Our investigation suggests that cardiac conduction system precursors may be electrophysiologically distinct and mature gradually throughout cardiac morphogenesis in the chick.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.a.20083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!