Goldfish color vision sensitivity is high under light-adapted conditions.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Department of Physiological Optics, School of Optometry, University of Alabama, Birmingham, AL 35294, USA.

Published: December 2004

The wavelength discrimination threshold of three goldfish was examined in a series of behavioral experiments. Using an auto-shaping technique, detection thresholds were established for 531 and 648 nm spectral increments presented on a 6.6 cd m(-2) white background. Next, discrimination between the wavelengths was established at equal, suprathreshold, intensities. Finally, the intensities of the two stimuli were reduced to establish the intensity threshold for the wavelength discrimination. The results indicate that goldfish, like several mammalian species, can discriminate wavelength at detection threshold intensity. This finding suggests that high color sensitivity is not confined to mammals or dependent upon a very high percentage of wavelength opponent ganglion cells. Rather, high color vision sensitivity may be based upon an inherent sensitivity advantage of wavelength opponent receptive fields compared to non-wavelength opponent receptive fields and be an important selective advantage of wavelength opponency and color vision.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-004-0557-9DOI Listing

Publication Analysis

Top Keywords

color vision
12
vision sensitivity
8
wavelength discrimination
8
high color
8
wavelength opponent
8
advantage wavelength
8
opponent receptive
8
receptive fields
8
wavelength
6
goldfish color
4

Similar Publications

Colour plays an important role in the sighted world, not only by guiding and warning, but also by helping to make decisions, form opinions, and influence emotional landscape. While not everyone has direct access to this information, even people without colour vision (i.e.

View Article and Find Full Text PDF

EEG reveals key features of binocular color fusion and rivalry.

Brain Cogn

January 2025

School of Information Science and Technology, Yunnan Normal University, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China. Electronic address:

Differences in the brain sensitivity to color responses may cause significant differences in the latency and amplitude of the electroencephalographic (EEG) component. This paper investigated the electroencephalography features of binocular color fusion and binocular color rivalry when watching stereoscopic three-dimensional (3D) displays. EEG experiments were conducted on a conventional 3D display platform.

View Article and Find Full Text PDF

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Differentiating Choroidal Melanomas and Nevi Using a Self-Supervised Deep Learning Model Applied to Clinical Fundoscopy Images.

Ophthalmol Sci

November 2024

Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Sciences (ILCaMS), University of Liverpool, Liverpool, United Kingdom.

Purpose: Testing the validity of a self-supervised deep learning (DL) model, RETFound, for use on posterior uveal (choroidal) melanoma (UM) and nevus differentiation.

Design: Case-control study.

Subjects: Ultrawidefield fundoscopy images, both color and autofluorescence, were used for this study, obtained from 4255 patients seen at the Liverpool Ocular Oncology Center between 1995 and 2020.

View Article and Find Full Text PDF

Mid-level visual processing represents a crucial stage between basic sensory input and higher-level object recognition. The conventional model posits that fundamental visual qualities like color and motion are processed in specialized, retinotopic brain regions (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!