Although NO donors have been shown to confer late preconditioning (PC) against myocardial ischemia/reperfusion injury in healthy rabbits, it is unknown whether concurrent systemic disorders affect NO donor-induced cardioprotection. Since many patients with coronary artery disease have hypercholesterolemia (HC), we examined the effect of this condition on late PC induced by the NO donor diethylenetriamine/nitric oxide (DETA/ NO). Chronically instrumented rabbits were fed a normal diet (normocholesterolemia, NC) or a diet enriched with 1% cholesterol (HC) for 4 weeks. Plasma cholesterol levels were significantly elevated and the arterial pressure response to the endothelium-dependent vasodilator bradykinin was blunted in cholesterol diet-fed rabbits. Conscious rabbits underwent a 30-minute coronary occlusion followed by 3 days of reperfusion. When NC rabbits were pretreated with DETA/NO (0.1 mg/kg, i. v. x 4, group II, n = 7) 24 hours before the 30-minute occlusion, infarct size was reduced by 52% (29.7 +/- 3.4% versus 62.4 +/- 4.0% of the region at risk in NC controls [group I, n = 5], P < 0.05), indicating that DETA/NO induced a late PC effect against myocardial infarction. In contrast, when HC rabbits were pretreated with the same dose of DETA/NO (group IV, n = 6), infarct size was not significantly reduced (61.0 +/- 5.7% versus 68.1 +/- 4.5% of the region at risk in HC [group III, n = 5], P = NS), suggesting that DETA/NO failed to induce a delayed cardioprotective effect. These data demonstrate, for the first time, that HC blunts NO donor-induced late PC against myocardial infarction, implying that the inhibitory effects of HC on ischemia-induced and NO donor-induced late PC are caused by disruption of biochemical pathways distal to the generation of NO that triggers these adaptations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713468 | PMC |
http://dx.doi.org/10.1007/s00395-004-0485-4 | DOI Listing |
J Mol Cell Cardiol
June 2008
Institute of Molecular Cardiology, Department of Medicine/Cardiology, University of Louisville, Louisville, KY, USA; Medical Service, Louisville VA Medical Center, Louisville, KY, USA. Electronic address:
Aldehydes are common reactive constituents of food, water and air. Several food aldehydes are potentially carcinogenic and toxic; however, the direct effects of dietary aldehydes on cardiac ischemia-reperfusion (IR) injury are unknown. We tested the hypothesis that dietary consumption of aldehydes modulates myocardial IR injury and preconditioning.
View Article and Find Full Text PDFJ Endocrinol Invest
December 2005
Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan.
Our aim was to study whether nitric oxide (NO) donor-induced inhibition of pregnant rat myometrium contractility correlates with the release of NO. Uterine rings from mid-pregnant and late pregnant Sprague-Dawley rats were used for isometric tension recording. Concentration-response relationships to sodium nitroprusside (SNP), nitroglycerine (NTG) and diethylamine (DEA)/NO were assessed.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2005
Institute of Molecular Cardiology, Univ. of Louisville, Louisville, KY, USA.
Although ischemia-induced late preconditioning (PC) is known to be mediated by inducible nitric oxide (NO) synthase (iNOS), the role of this enzyme in pharmacologically induced late PC remains unclear. We tested whether targeted disruption of the iNOS gene abrogates late PC elicited by three structurally different NO donors [diethylenetriamine/NO (DETA/NO), nitroglycerin (NTG), and S-nitroso-N-acetyl-penicillamine (SNAP)], an adenosine A1 receptor agonist [2-chloro-N6-cyclopentyladenosine (CCPA)], and a delta1-opioid receptor agonist (TAN-670). The mice were subjected to a 30-min coronary occlusion followed by 24 h of reperfusion.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2005
Department of Physiology, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
Mitochondrial permeability transition (MPT) pores have recently been implicated as a potential mediator of myocardial ischemic injury. Nitric oxide (NO) donors induce a powerful late phase of cardioprotection against ischemia-reperfusion injury; however, the cellular mechanisms involved are poorly understood. The role of MPT pores as a target of cardioprotective signaling pathways activated by NO has never been explored in detail.
View Article and Find Full Text PDFBasic Res Cardiol
November 2004
Division of Cardiology, University of Louisville, Louisville, Kentucky 40292, USA.
Although NO donors have been shown to confer late preconditioning (PC) against myocardial ischemia/reperfusion injury in healthy rabbits, it is unknown whether concurrent systemic disorders affect NO donor-induced cardioprotection. Since many patients with coronary artery disease have hypercholesterolemia (HC), we examined the effect of this condition on late PC induced by the NO donor diethylenetriamine/nitric oxide (DETA/ NO). Chronically instrumented rabbits were fed a normal diet (normocholesterolemia, NC) or a diet enriched with 1% cholesterol (HC) for 4 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!