Rotavirus, a cause of severe gastroenteritis, contains a segmented double-stranded (ds)RNA genome that replicates using viral mRNAs as templates. The highly conserved 3'-consensus sequence (3'CS), UGUGACC, of the mRNAs promotes dsRNA synthesis and enhances translation. We have found that the 3'CS of the gene (g5) encoding NSP1, an antagonist of interferon signaling, undergoes rapid mutation when rhesus rotavirus (RRV) is serially passaged at high multiplicity of infection (MOI) in cells permitting high titer growth. These mutations increase the promoter activity of the g5 3'-sequence, but decrease its activity as a translation enhancer. The location of the mutations defines the minimal essential promoter for dsRNA synthesis as URN0-5CC. Under passage conditions where cell-to-cell spread of the virus is required to complete infection (low MOI), the 3'CS is retained due to the need for NSP1 to be expressed at levels sufficient to prevent establishment of the antiviral state. These data demonstrate that host cell type and propagation conditions affect the capacity of RRV to produce the virulence gene product NSP1, an important consideration in producing RRV-based vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC524342 | PMC |
http://dx.doi.org/10.1038/sj.emboj.7600408 | DOI Listing |
Commun Biol
January 2025
Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.
View Article and Find Full Text PDFViruses
December 2024
Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India.
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!