Although eukaryotic translation initiation factor 5A (eIF5A) was originally designated as an "initiation factor," recent data have shown it to be also involved in apoptosis. However, the actual function of eIF5A in apoptosis is still unknown. In this study, we performed yeast two-hybrid screens to identify eIF5A-interacting proteins to help us understand the mechanisms of eIF5A. Our results demonstrated that eIF5A and syntenin could engage in a specific interaction both in vitro and in vivo and functioned collaboratively to regulate p53 activity. Our findings, for the first time, revealed a new biological activity for eIF5A as the regulator of p53. Overexpression of eIF5A or its EFP domain resulted in up-regulation of p53, and silencing eIF5A by small interfering RNA reduced the p53 protein level. Further analysis by reverse transcription PCR showed eIF5A-activated p53 transcription. The effect of eIF5A on p53 transcriptional activity was further demonstrated by the increasing expressions of p21 and Bax, well known target genes of p53. In contrast, a point mutant of eIF5A, hypusination being abolished, was revealed to be functionally defective in p53 up-regulation. Overexpression of eIF5A led to a p53-dependent apoptosis or sensitized cells to induction of apoptosis by chemotherapeutic agents. However, when eIF5A interacted with its novel partner, syntenin, the eIF5A-induced increase in p53 protein level was significantly inhibited. Therefore, eIF5A seems to be a previously unrecognized regulator of p53 that may define a new pathway for p53-dependent apoptosis, and syntenin might regulate p53 by balancing the regulation of eIF5A signaling to p53 for apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M407165200DOI Listing

Publication Analysis

Top Keywords

p53
13
eif5a
13
regulator p53
12
p53-dependent apoptosis
12
regulate p53
8
overexpression eif5a
8
p53 protein
8
protein level
8
apoptosis
7
novel eif5a
4

Similar Publications

In p53-deficient cancers, targeting cholesterol metabolism has emerged as a promising therapeutic approach, given that p53 loss dysregulates sterol regulatory element-binding protein 2 (SREBP-2) pathways, thereby enhancing cholesterol biosynthesis. While cholesterol synthesis inhibitors such as statins have shown initial success, their efficacy is often compromised by the development of acquired resistance. Consequently, new strategies are being explored to disrupt cholesterol homeostasis more comprehensively by inhibiting its synthesis and intracellular transport.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a prevalent and deadly disease, necessitating the exploration of novel therapeutic strategies. Traditional chemotherapy often encounters drug resistance and adverse side effects, highlighting the need for alternative approaches. , a plant rich in phytochemical constituents, was investigated for its potential as an anticancer agent against colorectal cancer (CRC).

View Article and Find Full Text PDF

Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing.

View Article and Find Full Text PDF

Inorganic arsenic modulates cell apoptosis by regulating Argonaute 2 expression via the p53 pathway.

Toxicol Res (Camb)

January 2025

Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China.

This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA).

View Article and Find Full Text PDF

Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable?

Genes Dis

March 2025

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.

Targeting oncogenes and their interactive partners is an effective approach to developing novel targeted therapies for cancer and other chronic diseases. We and others have long suggested the MDM2 oncogene being an excellent target for cancer therapy, based on its p53-dependent and -independent oncogenic activities in a variety of cancers. The MYC family proteins are transcription factors that also regulate diverse biological functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!