Extracellular matrix proteins (ECMs) serve as both a structural support for cells and a dynamic biochemical network that directs cellular activities. ECM proteins such as those of the SIBLING family (small integrin-binding ligand glycoprotein) could possess inherent growth factor activity. In this study, we demonstrate that exon 5 of dentin matrix protein 3 (phosphophoryn (PP)), a non-collagenous dentin ECM protein and SIBLING protein family member, up-regulates osteoblast marker genes in primary human adult mesenchymal stem cells (hMSCs), a mouse osteoblastic cell line (MC3T3-E1), and a mouse fibroblastic cell line (NIH3T3). Quantitative real-time PCR technology was used to quantify gene expression levels of bone markers such as Runx2, Osx (Osterix), bone/liver/kidney Alp (alkaline phosphatase), Ocn (osteocalcin), and Bsp (bone sialoprotein) in response to recombinant PP and stably transfected PP. PP up-regulated Runx2, Osx, and Ocn gene expression. PP increased OCN protein production in hMSCs and MC3T3-E1. ALP activity and calcium deposition was increased by PP in hMSC. Furthermore, an alpha(v)beta(3) integrin-blocking antibody significantly inhibited recombinant PP-induced expression of Runx2 in hMSCs, suggesting that signaling by PP is mediated through the integrin pathway. PP was also shown to activate p38, ERK1/2, and JNK, three components of the MAPK pathway. These data demonstrate a novel signaling function for PP in cell differentiation beyond the hypothesized role of PP in biomineralization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M404934200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!