We observed 10 sea lampreys (Petromyzon marinus) parasitizing basking sharks (Cetorhinus maximus), the world's second largest fish, in the Bay of Fundy. Due to the high concentrations of urea in the blood and tissues of ureosmotic elasmobranchs, we hypothesized that sea lampreys would have mechanisms to eliminate co-ingested urea while feeding on basking sharks. Post-removal urea excretion rates (J(Urea)) in two lampreys, removed from separate sharks by divers, were initially 450 ( approximately 9000 micromol N kg-1 h-1) and 75 times ( approximately 1500 micromol N kg-1 h-1) greater than basal (non-feeding) rates ( approximately 20 micromol N kg-1 h-1). In contrast, J(Urea) increased by 15-fold after parasitic lampreys were removed from non-ureosmotic rainbow trout (Oncorhynchus mykiss). Since activities of the ornithine urea cycle (OUC) enzymes, carbamoyl phosphate synthetase III (CPSase III) and ornithine carbamoyl transferase (OCT) were relatively low in liver and below detection in intestine and muscle, it is unlikely that the excreted urea arose from de novo urea synthesis. Measurements of arginase activity suggested that hydrolysis of dietary arginine made a minor contribution to J(Urea.). Post-feeding ammonia excretion rates (J(Amm)) were 15- to 25-fold greater than basal rates in lampreys removed from both basking sharks and rainbow trout, suggesting that parasitic lampreys have a high capacity to deaminate amino acids. We conclude that the sea lamprey's ability to penetrate the dermal denticle armor of sharks, to rapidly excrete large volumes of urea and a high capacity to deaminate amino acids, represent adaptations that have contributed to the evolutionary success of these phylogenetically ancient vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2004.06.001DOI Listing

Publication Analysis

Top Keywords

high capacity
12
basking sharks
12
lampreys removed
12
micromol kg-1
12
kg-1 h-1
12
urea
8
urea excretion
8
sea lampreys
8
excretion rates
8
greater basal
8

Similar Publications

Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.

View Article and Find Full Text PDF

Aqueous zinc-iodine batteries (AZIBs) are gaining attention as next-generation energy storage systems due to their high theoretical capacity, enhanced safety, and cost-effectiveness. However, their practical application is hindered by challenges such as slow reaction kinetics and the persistent polyiodide shuttle effect. To address these limitations, we developed a novel class of covalent organic frameworks (COFs) featuring electron-rich nitrogen sites with varied density and distribution (N1-N4) along the pore walls.

View Article and Find Full Text PDF

Workload-capacity imbalances and their impact on self-management complexity in patients with multimorbidity: a multicenter cross-sectional study.

Ann Med

December 2025

Department of Nursing, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.

Introduction: Multimorbidity is increasing globally, emphasizing the need for effective self-management strategies. The Cumulative Complexity Model (CuCoM) offers a unique perspective on understanding self-management based on workload and capacity. This study aims to validate the CuCoM in multimorbid patients and identify tailored predictors of self-management.

View Article and Find Full Text PDF

In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.

View Article and Find Full Text PDF

Metal hexacyanoferrates (HCFs), also known as Prussian blue analogues, are ideal cathodes for potassium-ion batteries (PIBs) due to their nontoxicity and cost-effectiveness. Nevertheless, obtaining metal HCF cathode materials with both long-term cycling stability and high rate performance remains a daunting challenge. In this study, we present mesoporous single-crystalline iron hexacyanoferrate (MSC-FeHCF) microspheres, featuring a single-crystalline structure that contains interconnected pores spanning the entire crystal lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!