The inducible isoform of heme oxygenase (HO), HO-1, has been shown to play an important role in attenuating tissue injury. Because HO-1 catalyzes the rate-limiting step in bilirubin synthesis, we examined the hypothesis that bilirubin is a key mediator of HO-1 cytoprotection, employing a rat model of endotoxemia. Bilirubin treatment resulted in improved survival and attenuated liver injury in response to lipopolysaccharide infusion. Serum levels of NO and tumor necrosis factor alpha, key mediators of endotoxemia, and hepatic inducible nitric oxide synthase (iNOS) expression were significantly lower in bilirubin-treated rodents versus control animals. Both intraperitoneal and local administration of bilirubin also was found to ameliorate hindpaw inflammation induced by the injection of lambda-carrageenan. Consistent with in vivo results, bilirubin significantly inhibited iNOS expression and suppressed NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. In contrast, bilirubin treatment induced a threefold increase in LPS-mediated prostaglandin synthesis in the absence of significant changes in cyclooxygenase expression or activity, suggesting that bilirubin enhances substrate availability for eicosanoid synthesis. Bilirubin had no effect on LPS-mediated activation of nuclear factor kappaB or p38 mitogen-activated protein kinase, consistent with a nuclear factor kappaB-independent mechanism of action. Taken together, these data support a cytoprotective role for bilirubin that is mediated, at least in part, through the inhibition of iNOS expression and, potentially, through stimulation of local prostaglandin E2 production. In conclusion, our findings suggest a role for bilirubin in mollifying tissue injury in response to inflammatory stimuli and support the possibility that the phenomenon of "jaundice of sepsis" represents an adaptive physiological response to endotoxemia. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.20334 | DOI Listing |
Neuroscience
January 2025
Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China. Electronic address:
Background: The mechanisms underlying esketamine's therapeutic effects remain elusive. The study aimed to explore the impact of single esketamine treatment on LPS-induced adolescent depressive-like behaviors and the role of Nrf2 regulated neuroinflammatory response in esketamine-produced rapid antidepressant efficacy.
Methods: Adolescent male C57BL/6J mice were randomly assigned to three groups: control, LPS, and LPS + esketamine (15 mg/kg, i.
Alzheimers Dement
December 2024
PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.
Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Geriatrics, Department of Internal Medicine, University of Sao Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Nitric oxide (NO) is involved in synaptic transmission and cerebral plasticity, playing a role in the memory process. However, in states of brain inflammation, hypoxia, or ischemia, there is induction of inducible nitric oxide synthase (iNOS) expression by astrocytes and pyramidal cells in the brain. Under conditions of chronic activation, there is a decoupling of iNOS dimers, leading to a massive generation of superoxide anion and peroxynitrite, O2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, College Station, Texas, USA., College Station, TX, USA.
Background: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) in the extracellular space, which leads to various adverse effects such as oxidative stress, neuroinflammation, mitochondrial dysfunction, tau phosphorylation, synapse loss, and neurodegeneration. Therefore, therapeutic interventions that can reduce Aβ-toxicity and slow down the progression of cognitive dysfunction in AD have significance. One promising approach is to use extracellular vesicles (EVs) that are released by neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!