Mutation of the highly conserved Arg165 and Glu168 residues of human Gsalpha disrupts the alphaD-alphaE loop and enhances basal GDP/GTP exchange rate.

J Cell Biochem

Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.

Published: October 2004

G protein signalling regulates a wide range of cellular processes such as motility, differentiation, secretion, neurotransmission, and cell division. G proteins consist of three subunits organized as a Galpha monomer associated with a Gbetagamma heterodimer. Structural studies have shown that Galpha subunits are constituted by two domains: a Ras-like domain, also called the GTPase domain (GTPaseD), and an helical domain (HD), which is unique to heterotrimeric G-proteins. The HD display significantly higher primary structure diversity than the GTPaseD. Regardless of this diversity, there are small regions of the HD which show high degree of identity with residues that are 100% conserved. One of such regions is the alpha helixD-alpha helixE loop (alphaD-alphaE) in the HD, which contains the consensus aminoacid sequence R*-[RSA]-[RSAN]-E*-[YF]-[QH]-L in all mammalian Galpha subunits. Interestingly, the highly conserved arginine (R*) and glutamic acid (E*) residues form a salt bridge that stabilizes the alphaD-alphaE loop, that is localized in the top of the cleft formed between the GTPaseD and HD. Because the guanine nucleotide binding site is deeply buried in this cleft and those interdomain interactions are playing an important role in regulating the basal GDP/GTP nucleotide exchange rate of Galpha subunits, we studied the role of these highly conserved R and E residues in Galpha function. In the present study, we mutated the human Gsalpha R165 and E168 residues to alanine (A), thus generating the R165--> A, E168--> A, and R165/E168--> A mutants. We expressed these human Gsalpha (hGsalpha) mutants in bacteria as histidine tagged proteins, purified them by niquel-agarose chromatography and studied their nucleotide exchange properties. We show that the double R165/E168--> A mutant exhibited a fivefold increased GTP binding kinetics, a higher GDP dissociation rate, and an augmented capacity to activate adenylyl cyclase. Structure analysis showed that disruption of the salt bridge between R165 and E168 by the introduced mutations, caused important structural changes in the HD at the alphaD-alphaE loop (residues 160-175) and in the GTPaseD at a region required for Gsalpha activation by the receptor (residues 308-315). In addition, other two GTPaseD regions that surround the GTP binding site were also affected.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.20193DOI Listing

Publication Analysis

Top Keywords

highly conserved
12
human gsalpha
12
alphad-alphae loop
12
galpha subunits
12
basal gdp/gtp
8
exchange rate
8
salt bridge
8
binding site
8
nucleotide exchange
8
r165 e168
8

Similar Publications

Effects of protection on large-bodied reef fishes in the western Indian Ocean.

Conserv Biol

January 2025

UMR ENTROPIE (IRD, UR, CNRS, IFREMER, UNC), CS 41096, La Reunion, France.

Predatory and large-bodied coral reef fishes have fundamental roles in the functioning and biodiversity of coral reef ecosystems, but their populations are declining, largely due to overexploitation in fisheries. These fishes include sharks, groupers, Humphead wrasse (Cheilinus undulatus), and Green Humphead parrotfish (Bolbometopon muricatum). In the western Indian Ocean, this situation is exacerbated by limited population data on these fishes, including from conventional visual census methods, which limit the surface area surveyed.

View Article and Find Full Text PDF

The nematode C. elegans has long served as a gold-standard model organism in aging research, particularly since the discovery of long-lived mutants in conserved aging pathways including daf-2 (IGF1) and age-1 (PI3K). Its short lifespan and small size make it highly suitable for high-throughput experiments.

View Article and Find Full Text PDF

More Than Meets the Eye: Unraveling the Interactions Between Skin Microbiota and Habitat in an Opportunistic Amphibian.

Microb Ecol

January 2025

Conservation Genomics Research Unit and Animal, Environmental and Antique DNA Platform, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.

With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats.

View Article and Find Full Text PDF

The Effector Protease FgTPP1 Suppresses Immune Responses and Facilitates Fusarium Head Blight Disease.

Mol Plant Microbe Interact

January 2025

USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States;

Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus , which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases.

View Article and Find Full Text PDF

Shifts in fungal communities drive soil profile nutrient cycling during grassland restoration.

mBio

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi, China.

Soil microbial diversity and community life strategies are crucial for nutrient cycling during vegetation restoration. Although the changes in topsoil microbial communities during restoration have been extensively studied, the structure, life strategies, and function of microbial communities in the subsoil remain poorly understood, especially regarding their role in nutrient cycling during vegetation restoration. In this study, we conducted a comprehensive investigation of the changes in the soil microbial community, assembly process, life strategies, and nutrient cycling functional genes in soil profiles (0-100 cm) across a 36 year chronosequence (5, 15, 28, and 36 years) of fenced grassland and one grazing grassland on the Loess Plateau of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!