Dominant-negative CREB inhibits heparanase functionality and melanoma cell invasion.

J Cell Biochem

Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University-Baton Rouge, Baton Rouge, Louisiana 70803, USA.

Published: October 2004

Heparanase (HPSE-1) is an endo-beta-D-glucuronidase involved in the degradation of cell-surface/extracellular matrix heparan sulfate (HS) in normal and neoplastic tissues. HPSE-1 represents the first example of purification and cloning of a mammalian HS-degradative enzyme. Elevated HPSE-1 levels are known to be associated with metastatic cancers, directly implicating HPSE-1 in metastatic events. The purpose of this study was to determine the role of cAMP response element-binding protein (CREB) in modulating HPSE-1-mediated effects on human melanoma cell invasion. Highly invasive, brain-metastatic melanoma cells (70W) were transfected with the dominant-negative CREB (KCREB) and subsequently analyzed for changes in their HPSE-1 content, functionality, and cell invasive properties. KCREB-transfected cells showed a decrease in HPSE-1 mRNA expression and activity. This correlated with a significantly decreased invasion of these cells through Matrigel-coated filters. Furthermore, adenoviral vectors containing the full-length human HPSE-1 cDNA in sense orientation (Ad-S/hep) were constructed to investigate CREB effects on HPSE-1. Restoration of HPSE-1 expression and functionality following Ad-S/hep infection of KCREB-transfected 70W cells recovered melanoma cell invasiveness. These results demonstrate that KCREB inhibits HPSE-1 and suggest that one of the roles CREB plays in the acquisition of melanoma cells metastatic phenotype is affecting HPSE-1 activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.20231DOI Listing

Publication Analysis

Top Keywords

melanoma cell
12
hpse-1
11
dominant-negative creb
8
cell invasion
8
melanoma cells
8
melanoma
5
cells
5
creb inhibits
4
inhibits heparanase
4
heparanase functionality
4

Similar Publications

Background: Neurologic symptoms seen in patients receiving immune checkpoint inhibitors (ICI) may not be entirely caused by immunotoxicity. We aim to highlight these confounding conditions through clinical cases to encourage early recognition and management.

Methods: We describe a series of seven cases from our institution that were treated with ICI and presented with Neurologic symptoms and were diagnosed with superimposed conditions beyond immunotoxicity.

View Article and Find Full Text PDF

Glutamate-rich WD40 repeat containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumor suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1.

View Article and Find Full Text PDF

The antiausterity strategy in anticancer drug discovery has attracted much attention as a way to exterminate cancer cells under nutrient deprived conditions which are commonly found in solid tumors. These tumors under low nutrient stress are known to be malignant and often resist conventional drug therapy. As a potential drug candidate, we focused on the meroterpenoid natural product callistrilone O which has demonstrated extremely potent antiausterity properties toward PANC-1 pancreatic carcinoma in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!