Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth.

J Biomed Mater Res B Appl Biomater

Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Published: October 2004

The development of protein coating on 3D biodegradable scaffold based on electrostatic self-assembly (ESA) to promote osteoblast growth is reported. Poly (ethylenimine) (PEI) was employed to obtain a stable positively charged surface on poly(DL-lactide) (PDL-LA) substrate. An extracellular-matrix (ECM)-like biomacromolecule, gelatin, was chosen as the polyelectrolyte to deposit on the activated PDL-LA substrate via ESA technique. Osteoblast (MC3T3) was then cultured on unmodified and gelatin-modified PDL-LA scaffolds. Osteoblast testing regarding total intracellular protein content, total DNA content, cell activity, and cell morphology on the ECM-like multilayer-modified PDL-LA scaffold showed that osteoblast growth was promoted. It will be easy to replace the gelatin with osteoinductive proteins or other polyelectrolytes to promote specific osteoblast functions. In comparison with conventional coating methods, polyelectrolyte multilayers are easy and stable to prepare. They may be a good choice for the surface modification of complex biomedical devices, especially for the 3D tissue-engineering scaffold. These very flexible systems allow broad medical applications for drug delivery and tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30080DOI Listing

Publication Analysis

Top Keywords

osteoblast growth
12
electrostatic self-assembly
8
promote osteoblast
8
pdl-la substrate
8
osteoblast
6
protein electrostatic
4
self-assembly polydl-lactide
4
scaffold
4
polydl-lactide scaffold
4
scaffold promote
4

Similar Publications

Bioactive ceramics have been used in bone tissue repair and regeneration. However, because of the complex in vivo osteogenesis process, long cycle, and difficulty of accurately tracking, the mechanism of interaction between materials and cells has yet to be fully understood, hindering its development. The ceramic microbridge microfluidic chip system may solve the problem and provide an in vitro method to simulate the microenvironment in vivo.

View Article and Find Full Text PDF

Purpose: The study evaluated the influence of titanium discs, coated with polyacrylonitrile infused curcumin nanofibers on osteoblast activity.

Materials And Methods: The titanium discs were coated with polyacrylonitrile nanofibers infused with curcumin. MG-63 cell lines were utilized for cell culture to assess osteoblast morphology upon exposure of curcumin on titanium discs.

View Article and Find Full Text PDF

Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.

View Article and Find Full Text PDF

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

Objectives: Dental bone formation involves various cellular and molecular mechanisms, and phytoestrogens such as formononetin (FORM) are promising because of their estrogenic, anti-inflammatory, and antioxidant effects. This study investigated the effect of FORM on osteoblast proliferation, differentiation, and mineralization in combination with spongiosa granulates (BO) in vitro.

Materials And Methods: Human fetal osteoblast cells (hFOB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!