Enhanced cytoplasmic sequestration of the nuclear export receptor CRM1 by NS2 mutations developed in the host regulates parvovirus fitness.

J Virol

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Published: October 2004

To investigate whether a DNA virus can evade passive immunotherapy with a polyclonal antiserum, we analyzed the protection of a neutralizing capsid antiserum against a lethal infection of the immunosuppressive strain of the parvovirus minute virus of mice (MVMi) in 42 immunodeficient mice over a period of 200 days. A few mice were effectively protected, but most developed a delayed lethal leukopenic syndrome during the treatment or weeks afterwards. Unexpectedly, viruses isolated from treated but also from control leukopenic mice showed no amino acid changes throughout the entire capsid coding region, although the viral populations were genetically heterogeneous, mainly in the second exon of the coding sequence of the NS2 nonstructural protein. The NS2 point amino acid changes (T88A, K96E, L103P, and L153 M) that were consistently selected in several mice clustered within the nuclear exportin CRM1 binding domain, in a reading frame that did not alter the overlapping NS1 coding region. These mutations endowed emerging viruses with an increased fitness that was demonstrable by their relative resistance to the neutralizing capsid antiserum in a postentry plaque-forming assay, the rapid overgrowth of a competing wild-type (wt) population in culture, and a larger yield of infectious particles. Mutant NS2 proteins interacted with a higher affinity and sequestered CRM1 in the perinuclear region of the cytoplasm more efficiently than the wt. Correspondingly this phenomenon, as well as the following timely ordered release of the NS1 nonstructural protein and the empty capsid from the nucleus to the cytoplasm, occurred markedly earlier in the infection cycle of the mutant viruses. We hypothesize that the enhanced cytoplasmic sequestration of CRM1 by the NS2 mutations selected in mice may trigger pleiotropic effects leading to an accelerated MVMi life cycle and thus to increased fitness. These results strengthen our earlier report on the rapid evolutionary capacity of this mammalian-specific DNA virus in vivo and indicate that the NS2-CRM1 interaction is an important determinant of parvovirus virulence that can be modulated in nature, hampering the effectiveness of passive antibody therapies in the long term.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516389PMC
http://dx.doi.org/10.1128/JVI.78.19.10674-10684.2004DOI Listing

Publication Analysis

Top Keywords

enhanced cytoplasmic
8
cytoplasmic sequestration
8
crm1 ns2
8
ns2 mutations
8
dna virus
8
neutralizing capsid
8
capsid antiserum
8
amino acid
8
acid changes
8
coding region
8

Similar Publications

Rapid introgression of the clubroot resistance gene into cabbage skeleton inbred lines through marker assisted selection.

Mol Breed

February 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.

Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.

View Article and Find Full Text PDF

Introduction: Cytomegalovirus (CMV) infection reorganizes early endosomes (EE), recycling endosome (RE), and trans-Golgi network (TGN) and expands their intermediates into a large perinuclear structure that forms the inner part of the cytoplasmic assembly complex (AC). The reorganization begins and results with the basic configuration (known as pre-AC) in the early (E) phase of infection, but the sequence of developmental steps is not yet well understood. One of the first signs of the establishment of the inner pre-AC, which can be observed by immunofluorescence, is the accumulation of Rab10.

View Article and Find Full Text PDF

Background: Patients with asthma exhibit a significantly heightened susceptibility to eosinophilic granulomatosis with polyangiitis (EGPA) when compared to the general population. Vigilance for EGPA manifestations is crucial, especially in cases where asthma remains poorly controlled despite high-dose corticosteroid therapy or when eosinophil counts exceed 5%. The diagnosis of EGPA can be complex due to the absence of definitive biomarkers, as indicated by the American College of Rheumatology (ACR)'s 1990 classification criteria.

View Article and Find Full Text PDF

Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.

View Article and Find Full Text PDF

Objectives: KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein involved in several cellular processes, including nuclear splicing, mRNA localization, and cytoplasmic degradation. While KHSRP's role has been studied in other cancers, its specific involvement in gastric cancer remains poorly understood. This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!