We perform a Monte Carlo simulation of irreversible template copolymerization near a chemically heterogeneous surface with a regular distribution of discrete adsorption sites that selectively adsorb from solution one of the two polymerizing monomers and the corresponding chain segments. In the polymerization model, the chain propagation process is simulated by adding individual monomers to the end of growing macroradical. We focus in this paper on the influence of polymerization rate, adsorption energy, and the distance between adsorption sites on the chain conformation and the primary sequence of the resulting two-letter (AB) copolymers and, specifically, on the coupling between polymerization and adsorption. The conditions for the realization of conformation-dependent copolymerization are formulated. For this regime, we observe the formation of a quasiregular copolymer with two types of alternating sections. One of them contains randomly distributed A and B segments. The second one consists mainly of strongly adsorbed A segments. It is found that the average length of the random sections is proportional to the distance between the nearest neighbor adsorption sites. The average length of the A-rich sections is determined by the "adsorption capacity" of adsorption site. By varying the strength of the effective monomer-substrate interaction and the distribution of adsorption sites on the substrate, the copolymers with different surface-induced primary sequences can be designed and synthesized in a controlled fashion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1783874 | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:
Pd-zeolite is considered one of the most promising passive NO adsorber (PNA) materials for NO purification in diesel vehicles during cold start. Nevertheless, the scarcity and high cost of the precious metal Pd restrict the industrialisation of Pd-zeolites as PNA. This work developed a bimetallic Mn and Ba co-modified SSZ-13 as non-precious metal PNA material.
View Article and Find Full Text PDFChem Asian J
January 2025
Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.
Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Periodate (PI) activation via three-dimensional electrochemical (E) is a promising approach for degrading sulfisoxazole (SIZ), while the scarcity of active sites significantly limits the efficient electron-transfer rate. Herein, we synthesized multiple strongly active zero-valent cobalt (Co) nanoparticles encapsulated in nitrogen-doped carbon (NC) shells through Co-potassium chloride (KCl) doping pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) to induce the rapid electron transfer pathways (ETP). Specifically, molten KCl doping provides confined structures for Co with a diameter of 12.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!