The dinuclear ruthenium(II) complex [(phen)(2)Ru(tatpp)Ru(phen)(2)][PF(6)](4) (P) (where phen is 1,10-phenanthroline and tatpp is 9,11,20,22-tetraazatetrapyrido[3,2-a:2'3'-c:3' ',2' '-l:2' ",3' "]pentacene) is shown to accept up to four electrons and two protons on the central tatpp bridging ligand via a combination of stoichiometric chemical reductions and protonations and spectroelectrochemistry (SEC) in acetonitrile. The absorption spectra of seven distinct species related by reduction and/or protonation of the central tatpp ligand were obtained and the two sequential photoproducts obtained from visible irradiation of P in acetonitrile (with 0.25 M triethylamine (TEA)) thus identified as P(-) (singly reduced, nonprotonated P) and HP(-) (doubly reduced, monoprotonated P), respectively. Importantly, the photochemical activity is maintained in mixed water-acetonitrile (1:4) solutions under basic conditions, and the protonation state of the photoproducts is readily controlled by varying the solution pH between 8 and 12. Absorption spectra obtained by SEC under similar solvent conditions were virtually identical to those obtained photochemically, and thus the doubly reduced photoproducts were identified as P(2)(-) (pH 12), HP(-) (pH 10), and H(2)()P (pH 8). This last photoproduct, H(2)()P, is particularly promising with respect to solar hydrogen production in that it can be produced in the presence of water and its dehydrogenation under appropriate conditions could yield H(2) and regenerate P. A qualitative MO diagram is presented as a framework for understanding the observed optical transitions as a function of oxidation and protonation state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja047931lDOI Listing

Publication Analysis

Top Keywords

central tatpp
8
absorption spectra
8
doubly reduced
8
protonation state
8
multielectron photoreduction
4
photoreduction bridged
4
bridged ruthenium
4
ruthenium dimer
4
dimer [phen2rutatppruphen2][pf6]4
4
[phen2rutatppruphen2][pf6]4 aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!