We demonstrated previously that exposure of CCL39 lung fibroblasts to alpha-thrombin rapidly inhibits interleukin 6-induced tyrosine phosphorylation of signal transducers and activators of transcription 3 (Stat3). While studying the cross-talk between alpha-thrombin and interleukin 6, we observed that the phospho-specific (tyrosine) anti-Stat3 antibody specifically cross-reacted with a 74-78-kDa protein(s) in alpha-thrombin-treated cells. In this study, we demonstrate that in alpha-thrombin-treated CCL39 cells, the 74-78-kDa protein(s) rapidly undergoes tyrosine phosphorylation. The phosphorylation by alpha-thrombin was detected as early as 5 min and reached a maximum at 15 min; however, low levels were present at 2 h. alpha-Thrombin receptor agonist peptide (SFLLRN) induced its tyrosine phosphorylation, suggesting that alpha-thrombin mediates the effects via protease-activated receptor type 1. Anti-Stat3 antibodies specific to different regions of Stat3 failed to recognize the 74-78-kDa protein(s), suggesting that it is unrelated to Stat3. Cell fractionation experiments showed that it is localized to the cytoplasm. Mass spectrometric analysis of the immunoprecipitated protein showed that the 74-78-kDa protein(s) is related to glucose-regulated protein 75 (GRP-75), a member of the heat shock/stress-response protein family. Consistent with these data, we observed tyrosine phosphorylation of GRP-75 in alpha-thrombin-treated cells. Exposure of cells to pervanadate, a stress-inducing agent, stimulated its tyrosine phosphorylation; however, cytokines and growth factors were ineffective. This is the first report of tyrosine phosphorylation of GRP-75-related stress protein(s) by alpha-thrombin and suggests that this pathway may contribute to the ability of alpha-thrombin to prevent apoptosis in cells exposed to stress or in the injured tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M409043200DOI Listing

Publication Analysis

Top Keywords

tyrosine phosphorylation
28
74-78-kda proteins
16
alpha-thrombin
8
alpha-thrombin rapidly
8
tyrosine
8
phosphorylation
8
alpha-thrombin-treated cells
8
proteins
6
cells
6
74-78-kda
5

Similar Publications

ERBB4 selectively amplifies TGF-β pro-metastatic responses.

Cell Rep

January 2025

MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China. Electronic address:

Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response.

View Article and Find Full Text PDF

Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment.

View Article and Find Full Text PDF

VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8T cells function in the HCC microenvironment.

Signal Transduct Target Ther

January 2025

Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).

View Article and Find Full Text PDF

The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!